UZH-Logo

The anion exchanger pendrin (SLC26A4) and renal acid-base homeostasis


Wagner, C A; Capasso, G (2011). The anion exchanger pendrin (SLC26A4) and renal acid-base homeostasis. Cellular Physiology and Biochemistry, 28(3):497-504.

Abstract

The anion exchanger pendrin (Pds, SLC26A4) transports various anions including bicarbonate, chloride and iodide. In the kidney, pendrin is exclusively expressed on the luminal pole of bicarbonate-secretory type B intercalated cells. Genetic ablation of pendrin in mice abolishes luminal chloride-bicarbonate exchanger activity from type B intercalated cells suggesting that pendrin is the apical bicarbonate extruding pathway. The renal expression of pendrin is developmentally adapted and pendrin positive cells originate from both the uretric bud and mesenchyme. In adult kidney, pendrin expression and activity is regulated by systemic acid-base status, dietary electrolyte intake (mostly chloride), and hormones such as angiotensin II and aldosterone which can affect subcellular localization, the relative number of pendrin expressing cells, and the overall abundance consistent with a role of pendrin in maintaining normal acid-base homeostasis. This review summarizes recent findings on the role and regulation of pendrin in the context of the kidneys role in acid-base homeostasis in health and disease.

The anion exchanger pendrin (Pds, SLC26A4) transports various anions including bicarbonate, chloride and iodide. In the kidney, pendrin is exclusively expressed on the luminal pole of bicarbonate-secretory type B intercalated cells. Genetic ablation of pendrin in mice abolishes luminal chloride-bicarbonate exchanger activity from type B intercalated cells suggesting that pendrin is the apical bicarbonate extruding pathway. The renal expression of pendrin is developmentally adapted and pendrin positive cells originate from both the uretric bud and mesenchyme. In adult kidney, pendrin expression and activity is regulated by systemic acid-base status, dietary electrolyte intake (mostly chloride), and hormones such as angiotensin II and aldosterone which can affect subcellular localization, the relative number of pendrin expressing cells, and the overall abundance consistent with a role of pendrin in maintaining normal acid-base homeostasis. This review summarizes recent findings on the role and regulation of pendrin in the context of the kidneys role in acid-base homeostasis in health and disease.

Citations

18 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

229 downloads since deposited on 12 Dec 2011
49 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:12 Dec 2011 12:41
Last Modified:01 Jul 2016 07:18
Publisher:Karger
ISSN:1015-8987
Additional Information:© 2011 S. Karger AG
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1159/000335111
PubMed ID:22116363
Permanent URL: http://doi.org/10.5167/uzh-52790

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 133kB
View at publisher
[img]
Preview
Content: Published Version
Filetype: PDF
Size: 223kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations