UZH-Logo

Maintenance Infos

Text-Mining-Methoden im Semantic Web


Schneider, Gerold; Zimmermann, Heinrich (2011). Text-Mining-Methoden im Semantic Web. Wirtschaftsinformatik und Management, 3:28-35.

Abstract

Aufbau, Pflege und Nutzung großer Wissensdatenbanken erfordert den kombinierten Einsatz menschlicher und maschineller Informationsverarbeitung. Da große Teile des menschlichen Wissens in Textform vorliegen, bieten sich Methoden des Text Minings zur Extraktion von Wissensinhalten an. Dieser Beitrag behandelt Grundlagen des Text Minings im Kontext des Semantic Webs.

Aufbau, Pflege und Nutzung großer Wissensdatenbanken erfordert den kombinierten Einsatz menschlicher und maschineller Informationsverarbeitung. Da große Teile des menschlichen Wissens in Textform vorliegen, bieten sich Methoden des Text Minings zur Extraktion von Wissensinhalten an. Dieser Beitrag behandelt Grundlagen des Text Minings im Kontext des Semantic Webs.

Downloads

7 downloads since deposited on 03 Jan 2012
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not refereed, further contribution
Communities & Collections:06 Faculty of Arts > English Department
06 Faculty of Arts > Institute of Computational Linguistics
Dewey Decimal Classification:000 Computer science, knowledge & systems
820 English & Old English literatures
410 Linguistics
Language:German
Date:28 June 2011
Deposited On:03 Jan 2012 16:05
Last Modified:12 May 2016 03:06
Publisher:Gabler Verlag, Springer Fachmedien
ISSN:1867-5905
Official URL:http://www.wirtschaftsinformatik.de/index.php;do=show/site=wi/sid=d7e6638e9c1f514de6389e5cb0c4b23e/alloc=12/id=2895
Permanent URL: http://doi.org/10.5167/uzh-52964

Download

[img]
Content: Published Version
Language: German
Filetype: PDF - Registered users only
Size: 484kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations