Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-53023

Günther, V; Davis, A M; Georgiev, O; Schaffner, W (2012). A conserved cysteine cluster, essential for transcriptional activity, mediates homodimerization of human metal-responsive transcription factor-1 (MTF-1). Biochimica et Biophysica Acta, 1823(2):476-483.

Accepted Version
View at publisher


Metal-responsive transcription factor-1 (MTF-1) is a zinc finger protein that activates transcription in response to heavy metals such as Zn(II), Cd(II) and Cu(I) and is also involved in the response to hypoxia and oxidative stress. MTF-1 recognizes a specific DNA sequence motif termed the metal response element (MRE), located in the promoter/enhancer region of its target genes. The functional domains of MTF-1 include, besides the DNA-binding and activation domains and signals for subcellular localization (NLS and NES), a cysteine cluster (632)CQCQCAC(638) located near the C-terminus. Here we show that this cysteine cluster mediates homodimerization of human MTF-1, and that dimer formation in vivo is important for basal and especially metal-induced transcriptional activity. Neither nuclear translocation nor DNA binding is impaired in a mutant protein in which these cysteines are replaced by alanines. Although zinc supplementation induces MTF-1 dependent transcription it does not per se enhance dimerization, implying that actual zinc sensing is mediated by another domain. By contrast copper, which on its own activates MTF-1 only weakly in the cell lines tested, stabilizes the dimer by inducing intermolecular disulfide bond formation and synergizes with zinc to boost MTF-1 dependent transcription.


15 citations in Web of Science®
13 citations in Scopus®
Google Scholar™



62 downloads since deposited on 09 Jan 2012
8 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Deposited On:09 Jan 2012 14:26
Last Modified:05 Apr 2016 15:15
Publisher DOI:10.1016/j.bbamcr.2011.10.006
PubMed ID:22057392

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page