UZH-Logo

Maintenance Infos

Synaptogenesis in the cerebellar cortex: differential regulation of gephyrin and GABAA receptors at somatic and dendritic synapses of Purkinje cells


Viltono, L; Patrizi, A; Fritschy, J M; Sassoè-Pognetto, M (2008). Synaptogenesis in the cerebellar cortex: differential regulation of gephyrin and GABAA receptors at somatic and dendritic synapses of Purkinje cells. Journal of Comparative Neurology, 508(4):579-591.

Abstract

In rodent cerebellar cortex, synaptogenesis occurs entirely postnatally, allowing study of the mechanisms of synapse formation in vivo. Here we monitored the clustering of GABA(A) receptors and the scaffolding protein gephyrin at GABAergic postsynaptic sites during rat cerebellar development. We found that GABA(A) receptors and gephyrin co-aggregate at nascent synapses in the molecular and Purkinje cell layers with a similar time course. With few exceptions, gephyrin and GABA(A) receptor subunits clustered selectively in front of presynaptic boutons expressing the vesicular inhibitory amino acid transporter VIAAT and no ectopic localization of these molecules was observed. Surprisingly, gephyrin clusters outlining the cell body of Purkinje cells were transient, and disappeared rapidly at the end of the second postnatal week. The loss of gephyrin from perisomatic synapses was coincident with a significant reduction in the size of GABA(A) receptor clusters. Furthermore, these changes were accompanied by a developmental decrease in the size of synaptic appositions, as documented by electron microscopy. These findings suggest that gephyrin takes part in the initial assembly of postsynaptic specializations and reveal an unsuspected heterogeneity in the molecular organization of the postsynaptic apparatus at somatic and dendritic synapses of mature Purkinje cells.

In rodent cerebellar cortex, synaptogenesis occurs entirely postnatally, allowing study of the mechanisms of synapse formation in vivo. Here we monitored the clustering of GABA(A) receptors and the scaffolding protein gephyrin at GABAergic postsynaptic sites during rat cerebellar development. We found that GABA(A) receptors and gephyrin co-aggregate at nascent synapses in the molecular and Purkinje cell layers with a similar time course. With few exceptions, gephyrin and GABA(A) receptor subunits clustered selectively in front of presynaptic boutons expressing the vesicular inhibitory amino acid transporter VIAAT and no ectopic localization of these molecules was observed. Surprisingly, gephyrin clusters outlining the cell body of Purkinje cells were transient, and disappeared rapidly at the end of the second postnatal week. The loss of gephyrin from perisomatic synapses was coincident with a significant reduction in the size of GABA(A) receptor clusters. Furthermore, these changes were accompanied by a developmental decrease in the size of synaptic appositions, as documented by electron microscopy. These findings suggest that gephyrin takes part in the initial assembly of postsynaptic specializations and reveal an unsuspected heterogeneity in the molecular organization of the postsynaptic apparatus at somatic and dendritic synapses of mature Purkinje cells.

Citations

19 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 14 Nov 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 June 2008
Deposited On:14 Nov 2008 16:15
Last Modified:05 Apr 2016 12:33
Publisher:Wiley-Blackwell
ISSN:0021-9967
Publisher DOI:10.1002/cne.21713
PubMed ID:18366064
Permanent URL: http://doi.org/10.5167/uzh-5324

Download

[img]
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations