UZH-Logo

Maintenance Infos

Ascidian dermatan sulfates attenuate metastasis, inflammation and thrombosis by inhibition of P-selectin


Kozlowski, E; Pavão, M S G; Borsig, L (2011). Ascidian dermatan sulfates attenuate metastasis, inflammation and thrombosis by inhibition of P-selectin. Journal of Thrombosis and Haemostasis, 9(9):1807-1815.

Abstract

Background: Cancer-associated thrombosis and enduring inflammation are strongly associated with cancer progression and metastasis. Heparin is the mostly clinically used anticoagulant/antithrombotic drug, and has recently been shown to exhibit antimetastatic and anti-inflammatory activities that are linked to inhibition of P-selectin and/or L-selectin. P-selectin-mediated platelet–tumor cell and tumor cell–endothelium interactions facilitate the initial steps of metastasis. Objectives and Methods: The aim of the present study was to determine the capacity of dermatan sulfates to inhibit P-selectin and to test their potential to affect thrombosis, inflammation and metastasis in respective experimental mouse models. Results: Two dermatan sulfates isolated from the ascidians Styela plicata and Phallusia nigra, composed of the same disaccharide core structure (IdoA2-GalNAc)n, but sulfated at carbon 4 or 6 of the GalNAc, respectively, have opposed heparin cofactor II (HCII) activities and are potent inhibitors of P-selectin. The ascidian dermatan sulfates effectively attenuated metastasis of both MC-38 colon carcinoma and B16-BL6 melanoma cells and the infiltration of inflammatory cells in a thioglycollate peritonitis mouse model. Moreover, both glycosaminoglycans reduced thrombus size in an FeCl3-induced arterial thrombosis model, irrespective of their HCII activities. The analysis of arterial thrombi demonstrated markedly reduced platelet deposition after dermatan sulfate treatment, suggesting that the glycosaminoglycan inhibited P-selectin and thereby the binding of activated platelets during thrombus formation. Conclusions: Collectively, these findings provide evidence that specific inhibition of P-selectin represents a potential therapeutic target in thrombosis, inflammation and metastasis, and that ascidian dermatan sulfates may serve as antiselectin agents.

Background: Cancer-associated thrombosis and enduring inflammation are strongly associated with cancer progression and metastasis. Heparin is the mostly clinically used anticoagulant/antithrombotic drug, and has recently been shown to exhibit antimetastatic and anti-inflammatory activities that are linked to inhibition of P-selectin and/or L-selectin. P-selectin-mediated platelet–tumor cell and tumor cell–endothelium interactions facilitate the initial steps of metastasis. Objectives and Methods: The aim of the present study was to determine the capacity of dermatan sulfates to inhibit P-selectin and to test their potential to affect thrombosis, inflammation and metastasis in respective experimental mouse models. Results: Two dermatan sulfates isolated from the ascidians Styela plicata and Phallusia nigra, composed of the same disaccharide core structure (IdoA2-GalNAc)n, but sulfated at carbon 4 or 6 of the GalNAc, respectively, have opposed heparin cofactor II (HCII) activities and are potent inhibitors of P-selectin. The ascidian dermatan sulfates effectively attenuated metastasis of both MC-38 colon carcinoma and B16-BL6 melanoma cells and the infiltration of inflammatory cells in a thioglycollate peritonitis mouse model. Moreover, both glycosaminoglycans reduced thrombus size in an FeCl3-induced arterial thrombosis model, irrespective of their HCII activities. The analysis of arterial thrombi demonstrated markedly reduced platelet deposition after dermatan sulfate treatment, suggesting that the glycosaminoglycan inhibited P-selectin and thereby the binding of activated platelets during thrombus formation. Conclusions: Collectively, these findings provide evidence that specific inhibition of P-selectin represents a potential therapeutic target in thrombosis, inflammation and metastasis, and that ascidian dermatan sulfates may serve as antiselectin agents.

Citations

32 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

50 downloads since deposited on 16 Jan 2012
21 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:16 Jan 2012 08:51
Last Modified:05 Apr 2016 15:17
Publisher:Wiley-Blackwell
ISSN:1538-7836
Funders:SNF
Publisher DOI:https://doi.org/10.1111/j.1538-7836.2011.04401.x
PubMed ID:21676168
Permanent URL: https://doi.org/10.5167/uzh-53579

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 433kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations