UZH-Logo

Maintenance Infos

The effect of forest soil and community composition on ectomycorrhizal colonization and seedling growth


O’Brien, M J; Gomola, C E; Horton, T R (2011). The effect of forest soil and community composition on ectomycorrhizal colonization and seedling growth. Plant and Soil, 341(1-2):321-331.

Abstract

Plant–soil feedbacks have been observed in many forest communities, but the role of the mycorrhizal community in perpetuating feedback loops is still poorly understood. Mycorrhizal community composition is closely linked to soil properties and host plant composition, which highlights their potential importance in plant–soil–fungus loops. Eastern hemlock (hemlock; Tsuga canadensis) seedlings were grown in soil bioassays in growth chambers and transplanted under closed forest canopy to examine the effect of hardwood and hemlock forest soil on seedling growth, survival, and ectomycorrhizal fungi (EMF) colonization. Seedlings propagated in hemlock forest soil had greater height growth compared with sterile control soil and achieved greater mycorrhizal colonization than seedlings grown in hardwood forest soils after 9 months in a growth chamber. Outplanted seedlings grown in hemlock communities achieved significantly greater increment growth than those seedlings grown in hardwood communities (mean height difference (95% CI) = 0.39cm (0.14–0.63 cm)), although final survival and EMF colonization was similar between forest types. EMF diversity (Shannon-Wiener index (SE) = 1.88 (0.28) and 1.23 (0.44) for hardwood and hemlock, respectively) and community assemblage (Jaccard index (SE) = 19.0%(4%)) differed between the two forest communities. EMF community assemblage was associated with both the forest type (i.e. plant community/ microsite effects) and initial soil type (i.e. soil characteristics/resistant inoculum). The results support previously observed positive feedbacks between conspecifics under hemlock forest communities and provides evidence for the role of the EMF community within this feedback loop. Alternatively, the reduced growth of hemlocks under hardwoods may be attributed to the different EMF community associated with that forest.

Abstract

Plant–soil feedbacks have been observed in many forest communities, but the role of the mycorrhizal community in perpetuating feedback loops is still poorly understood. Mycorrhizal community composition is closely linked to soil properties and host plant composition, which highlights their potential importance in plant–soil–fungus loops. Eastern hemlock (hemlock; Tsuga canadensis) seedlings were grown in soil bioassays in growth chambers and transplanted under closed forest canopy to examine the effect of hardwood and hemlock forest soil on seedling growth, survival, and ectomycorrhizal fungi (EMF) colonization. Seedlings propagated in hemlock forest soil had greater height growth compared with sterile control soil and achieved greater mycorrhizal colonization than seedlings grown in hardwood forest soils after 9 months in a growth chamber. Outplanted seedlings grown in hemlock communities achieved significantly greater increment growth than those seedlings grown in hardwood communities (mean height difference (95% CI) = 0.39cm (0.14–0.63 cm)), although final survival and EMF colonization was similar between forest types. EMF diversity (Shannon-Wiener index (SE) = 1.88 (0.28) and 1.23 (0.44) for hardwood and hemlock, respectively) and community assemblage (Jaccard index (SE) = 19.0%(4%)) differed between the two forest communities. EMF community assemblage was associated with both the forest type (i.e. plant community/ microsite effects) and initial soil type (i.e. soil characteristics/resistant inoculum). The results support previously observed positive feedbacks between conspecifics under hemlock forest communities and provides evidence for the role of the EMF community within this feedback loop. Alternatively, the reduced growth of hemlocks under hardwoods may be attributed to the different EMF community associated with that forest.

Citations

1 citation in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 20 Jan 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Community assemblage, Eastern hemlock, Ectomycorrhizal fungi, Feedback loops, Species interactions, Tsuga canadensis
Language:English
Date:2011
Deposited On:20 Jan 2012 09:12
Last Modified:12 Apr 2016 12:03
Publisher:Springer
ISSN:0032-079X
Publisher DOI:https://doi.org/10.1007/s11104-010-0646-1

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 264kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations