UZH-Logo

Maintenance Infos

Inbreeding effects in wild populations


Keller, L F; Waller, D M (2002). Inbreeding effects in wild populations. Trends in Ecology and Evolution, 17(5):230-241.

Abstract

Whether inbreeding affects the demography and persistence of natural populations has been questioned. However, new pedigree data from field populations and molecular and analytical tools for tracing patterns of relationship and inbreeding have now enhanced our ability to detect inbreeding depression within and among wild populations. This work reveals that levels of inbreeding depression vary across taxa, populations and environments, but are usually substantial enough to affect both individual and population performance. Data from bird and mammal populations suggest that inbreeding depression often significantly affects birth weight, survival, reproduction and resistance to disease, predation and environmental stress. Plant studies, based mostly on comparing populations that differ in size or levels of genetic variation, also reveal significant inbreeding effects on seed set, germination, survival and resistance to stress. Data from butterflies, birds and plants demonstrate that populations with reduced genetic diversity often experience reduced growth and increased extinction rates. Crosses between such populations often result in heterosis. Such a genetic rescue effect might reflect the masking of fixed deleterious mutations. Thus, it might be necessary to retain gene flow among increasingly fragmented habitat patches to sustain populations that are sensitive to inbreeding.

Abstract

Whether inbreeding affects the demography and persistence of natural populations has been questioned. However, new pedigree data from field populations and molecular and analytical tools for tracing patterns of relationship and inbreeding have now enhanced our ability to detect inbreeding depression within and among wild populations. This work reveals that levels of inbreeding depression vary across taxa, populations and environments, but are usually substantial enough to affect both individual and population performance. Data from bird and mammal populations suggest that inbreeding depression often significantly affects birth weight, survival, reproduction and resistance to disease, predation and environmental stress. Plant studies, based mostly on comparing populations that differ in size or levels of genetic variation, also reveal significant inbreeding effects on seed set, germination, survival and resistance to stress. Data from butterflies, birds and plants demonstrate that populations with reduced genetic diversity often experience reduced growth and increased extinction rates. Crosses between such populations often result in heterosis. Such a genetic rescue effect might reflect the masking of fixed deleterious mutations. Thus, it might be necessary to retain gene flow among increasingly fragmented habitat patches to sustain populations that are sensitive to inbreeding.

Citations

1416 citations in Web of Science®
1488 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 30 Apr 2012
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:May 2002
Deposited On:30 Apr 2012 08:23
Last Modified:05 Apr 2016 15:17
Publisher:Elsevier
ISSN:0169-5347
Publisher DOI:https://doi.org/10.1016/S0169-5347(02)02489-8
Other Identification Number:ISI:000175024300013

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 108kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations