UZH-Logo

Maintenance Infos

Recording intracellular molecular events from the outside: glycosylphosphatidylinositol-anchored avidin as a reporter protein for in vivo imaging


Lehmann, S; Garayoa, E G; Blanc, A; Keist, R; Schibli, R; Rudin, M (2011). Recording intracellular molecular events from the outside: glycosylphosphatidylinositol-anchored avidin as a reporter protein for in vivo imaging. Journal of Nuclear Medicine, 52(3):445-452.

Abstract

With the emergence of multimodal imaging strategies, genetically encoded reporters that can be flexibly combined with any imaging modality become highly attractive. Here we describe the use of glycosylphosphatidylinositol (GPI)-anchored avidin, an avidin moiety targeted to the extracellular side of cell membranes via a GPI anchor, as a reporter for in vivo imaging. Being present on the outside of cells, avidin can be visualized with any type of biotinylated imaging agent, without the requirement that the probe be membrane-permeable. We used the avidin-GPI system to monitor the activity of hypoxia-inducible factors (HIFs)-oxygen-sensing transcription factors, which play a major role in regulating cancer progression-in a mouse tumor allograft model.

METHODS: Mouse C51 cells were stably transfected with pH3SVG, a reporter construct driving the expression of avidin-GPI from an HIF-sensitive promoter. The transfected cells were subcutaneously implanted into BALB/c nude mice. At 10 d after tumor inoculation, mice received an intravenous injection of either alexa-594-biocytin or (67)Ga-DOTA-biotin, and tumor HIF activity was imaged using fluorescence reflectance imaging or SPECT.

RESULTS: In vitro cell experiments demonstrated the functionality and HIF-dependent regulation of the avidin-GPI reporter construct. In vivo, avidin-GPI was targeted specifically in allograft tumors with biotinylated imaging probes using both fluorescence imaging and SPECT. Analysis of the reporter expression pattern on ex vivo tumor tissue sections indicated a good overlap, with areas of hypoxia.

CONCLUSION: We have demonstrated the utility of avidin-GPI as a reporter for multimodal in vivo imaging using both a fluorescence and a SPECT approach to assess intracellular oxygen signaling in a mouse tumor model.

With the emergence of multimodal imaging strategies, genetically encoded reporters that can be flexibly combined with any imaging modality become highly attractive. Here we describe the use of glycosylphosphatidylinositol (GPI)-anchored avidin, an avidin moiety targeted to the extracellular side of cell membranes via a GPI anchor, as a reporter for in vivo imaging. Being present on the outside of cells, avidin can be visualized with any type of biotinylated imaging agent, without the requirement that the probe be membrane-permeable. We used the avidin-GPI system to monitor the activity of hypoxia-inducible factors (HIFs)-oxygen-sensing transcription factors, which play a major role in regulating cancer progression-in a mouse tumor allograft model.

METHODS: Mouse C51 cells were stably transfected with pH3SVG, a reporter construct driving the expression of avidin-GPI from an HIF-sensitive promoter. The transfected cells were subcutaneously implanted into BALB/c nude mice. At 10 d after tumor inoculation, mice received an intravenous injection of either alexa-594-biocytin or (67)Ga-DOTA-biotin, and tumor HIF activity was imaged using fluorescence reflectance imaging or SPECT.

RESULTS: In vitro cell experiments demonstrated the functionality and HIF-dependent regulation of the avidin-GPI reporter construct. In vivo, avidin-GPI was targeted specifically in allograft tumors with biotinylated imaging probes using both fluorescence imaging and SPECT. Analysis of the reporter expression pattern on ex vivo tumor tissue sections indicated a good overlap, with areas of hypoxia.

CONCLUSION: We have demonstrated the utility of avidin-GPI as a reporter for multimodal in vivo imaging using both a fluorescence and a SPECT approach to assess intracellular oxygen signaling in a mouse tumor model.

Citations

4 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:570 Life sciences; biology
170 Ethics
610 Medicine & health
Language:English
Date:2011
Deposited On:12 Jan 2012 17:13
Last Modified:05 Apr 2016 15:17
Publisher:Society of Nuclear Medicine
ISSN:0161-5505
Publisher DOI:https://doi.org/10.2967/jnumed.110.082412
PubMed ID:21321260

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations