Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-53716

Stuker, F; Ripoll, J; Rudin, M (2011). Fluorescence molecular tomography: Principles and potential for pharmaceutical research. Pharmaceutics, 3(2):229-274.

[img]
Preview
Published Version
PDF
5MB

View at publisher

Abstract

Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue’s optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development.

Citations

Altmetrics

Downloads

38 downloads since deposited on 13 Jan 2012
12 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
04 Faculty of Medicine > Institute of Biomedical Engineering
DDC:570 Life sciences; biology
170 Ethics
610 Medicine & health
Language:English
Date:2011
Deposited On:13 Jan 2012 10:15
Last Modified:30 Nov 2012 03:42
Publisher:Molecular Diversity Preservation International (MDPI)
ISSN:1999-4923
Additional Information:fluorescence molecular tomography; biomedical imaging; optical tomography; fluorescence; hybrid imaging
Publisher DOI:10.3390/pharmaceutics3020229

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page