Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Stuker, F; Baltes, C; Dikaiou, K; Vats, D; Carrara, L; Charbon, E; Ripoll, J; Rudin, M (2011). Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors. IEEE Transactions on Medical Imaging, 30(6):1265-1273.

Full text not available from this repository.

Abstract

The high sensitivity of fluorescence imaging enables the detection of molecular processes in living organisms. However, diffuse light propagation in tissue prevents accurate recovery of tomographic information on fluorophore distribution for structures embedded deeper than 0.5 mm. Combining optical with magnetic resonance imaging (MRI) provides an accurate anatomical reference for fluorescence imaging data and thereby enables the correlation of molecular with high quality structural/functional information. We describe an integrated system for small animal imaging incorporating a noncontact fluorescence molecular tomography (FMT) system into an MRI detector. By adopting a free laser beam design geometrical constraints imposed by the use of optical fibers could be avoided allowing for flexible fluorescence excitation schemes. Photon detection based on a single-photon avalanche diode array enabled simultaneous FMT/MRI measurements without interference between modalities. In vitro characterization revealed good spatial accuracy of FMT data and accurate quantification of dye concentrations. Feasibility of FMT/MRI was demonstrated in vivo by simultaneous assessment of protease activity and tumor morphology in murine colon cancer xenografts.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
04 Faculty of Medicine > Institute of Biomedical Engineering
DDC:570 Life sciences; biology
170 Ethics
610 Medicine & health
Language:English
Date:2011
Deposited On:13 Jan 2012 09:47
Last Modified:27 Nov 2013 22:28
Publisher:IEEE
ISSN:0278-0062
Publisher DOI:10.1109/TMI.2011.2112669
PubMed ID:21317083
Citations:Web of Science®. Times Cited: 16
Google Scholar™
Scopus®. Citation Count: 16

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page