UZH-Logo

Conformational changes of calmodulin on calcium and peptide binding monitored by film bulk acoustic resonators


Nirschl, M; Ottl, J; Vörös, J (2011). Conformational changes of calmodulin on calcium and peptide binding monitored by film bulk acoustic resonators. Biosensors, 1(4):164-176.

Abstract

Film bulk acoustic resonators (FBAR) are mass sensitive, label-free biosensors that allow monitoring of the interaction between biomolecules. In this paper we use the FBAR to measure the binding of calcium and the CaMKII peptide to calmodulin. Because the mass of the calcium is too small to be detected, the conformational change caused by the binding process is measured by monitoring the resonant frequency and the motional resistance of the FBAR. The resonant frequency is a measure for the amount of mass coupled to the sensor while the motional resistance is influenced by the viscoelastic properties of the adsorbent. The measured frequency shift during the calcium adsorptions was found to be strongly dependent on the surface concentration of the immobilized calmodulin, which indicates that the measured signal is significantly influenced by the amount of water inside the calmodulin layer. By plotting the measured motional resistance against the frequency shift, a mass adsorption can be distinguished from processes involving measurable conformational changes. With this method three serial processes were identified during the peptide binding. The results show that the FBAR is a promising technology for the label-free measurement of conformational changes.

Film bulk acoustic resonators (FBAR) are mass sensitive, label-free biosensors that allow monitoring of the interaction between biomolecules. In this paper we use the FBAR to measure the binding of calcium and the CaMKII peptide to calmodulin. Because the mass of the calcium is too small to be detected, the conformational change caused by the binding process is measured by monitoring the resonant frequency and the motional resistance of the FBAR. The resonant frequency is a measure for the amount of mass coupled to the sensor while the motional resistance is influenced by the viscoelastic properties of the adsorbent. The measured frequency shift during the calcium adsorptions was found to be strongly dependent on the surface concentration of the immobilized calmodulin, which indicates that the measured signal is significantly influenced by the amount of water inside the calmodulin layer. By plotting the measured motional resistance against the frequency shift, a mass adsorption can be distinguished from processes involving measurable conformational changes. With this method three serial processes were identified during the peptide binding. The results show that the FBAR is a promising technology for the label-free measurement of conformational changes.

Altmetrics

Downloads

38 downloads since deposited on 13 Jan 2012
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2011
Deposited On:13 Jan 2012 08:43
Last Modified:17 Aug 2016 07:16
Publisher:MDPI Publishing
ISSN:2079-6374
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.3390/bios1040164
Permanent URL: http://doi.org/10.5167/uzh-53731

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 685kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations