Quick Search:

is currently disabled due to reindexing of the ZORA database. Please use Advanced Search.
uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Guillaume-Gentil, O; Zahn, R; Lindhoud, S; Graf, N; Vörös, J; Zambelli, T (2011). From nanodroplets to continuous films: how the morphology of polyelectrolyte multilayers depends on the dielectric permittivity and the surface charge of the supporting substrate. Soft Matter, 7(8):3861-3871.

Full text not available from this repository.

Abstract

Using atomic force microscopy, we investigated how the morphology of layer-by-layer deposited polyelectrolyte multilayers is influenced by the physical properties of the supporting substrate. The surface coverage of the assembly and its topography were found to be dependent on the dielectric permittivity of the substrate and the strength of the electrostatic interactions between polyanions and polycations. For poly(allylamine hydrochloride)/poly(styrene sulfonate) (PAH/PSS), a strongly interacting polyelectrolyte couple, no dependency of the surface morphology on the physical properties of the underlying substrate was observed. In contrast, the weakly interacting pair poly(L-lysine)/hyaluronic acid (PLL/HA) formed rapidly continuous, flat layers on substrates of low dielectric permittivity and inhomogeneous droplet-films on substrates of high dielectric permittivity. Variations in the dielectric permittivity account for changes in the image charges that are induced in the substrate. These changes influence the balance between repulsive electrostatic forces (and image forces) and attractive van der Waals interactions, and thus cause the differences in surface morphology. Differences in surface charge did not influence the morphology of the polyelectrolyte multilayers, but higher surface charge resulted in more polymeric material adsorbed on the surface. A comparison between (PLL/HA) multilayers with and without an initial layer of poly(ethyleneimine) (PEI) supports this hypothesis.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
DDC:170 Ethics
610 Medicine & health
Language:English
Date:2011
Deposited On:12 Jan 2012 17:06
Last Modified:28 Nov 2013 00:07
Publisher:Royal Society of Chemistry
ISSN:1744-683X
Publisher DOI:10.1039/C0SM01451F
Citations:Web of Science®. Times Cited: 8
Google Scholar™
Scopus®. Citation Count: 8

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page