UZH-Logo

Cellular prion protein conformation and function


Damberger, F F; Christen, B; Pérez, D R; Hornemann, S; Wüthrich, K (2011). Cellular prion protein conformation and function. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 108(42):17308-17313.

Abstract

In the otherwise highly conserved NMR structures of cellular prion proteins (PrP(C)) from different mammals, species variations in a surface epitope that includes a loop linking a β-strand, β2, with a helix, α2, are associated with NMR manifestations of a dynamic equilibrium between locally different conformations. Here, it is shown that this local dynamic conformational polymorphism in mouse PrP(C) is eliminated through exchange of Tyr169 by Ala or Gly, but is preserved after exchange of Tyr 169 with Phe. NMR structure determinations of designed variants of mouse PrP(121-231) at 20 °C and of wild-type mPrP(121-231) at 37 °C together with analysis of exchange effects on NMR signals then resulted in the identification of the two limiting structures involved in this local conformational exchange in wild-type mouse PrP(C), and showed that the two exchanging structures present characteristically different solvent-exposed epitopes near the β2-α2 loop. The structural data presented in this paper provided a platform for currently ongoing, rationally designed experiments with transgenic laboratory animals for renewed attempts to unravel the so far elusive physiological function of the cellular prion protein.

In the otherwise highly conserved NMR structures of cellular prion proteins (PrP(C)) from different mammals, species variations in a surface epitope that includes a loop linking a β-strand, β2, with a helix, α2, are associated with NMR manifestations of a dynamic equilibrium between locally different conformations. Here, it is shown that this local dynamic conformational polymorphism in mouse PrP(C) is eliminated through exchange of Tyr169 by Ala or Gly, but is preserved after exchange of Tyr 169 with Phe. NMR structure determinations of designed variants of mouse PrP(121-231) at 20 °C and of wild-type mPrP(121-231) at 37 °C together with analysis of exchange effects on NMR signals then resulted in the identification of the two limiting structures involved in this local conformational exchange in wild-type mouse PrP(C), and showed that the two exchanging structures present characteristically different solvent-exposed epitopes near the β2-α2 loop. The structural data presented in this paper provided a platform for currently ongoing, rationally designed experiments with transgenic laboratory animals for renewed attempts to unravel the so far elusive physiological function of the cellular prion protein.

Citations

25 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 14 Jan 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:14 Jan 2012 18:00
Last Modified:05 Apr 2016 15:18
Publisher:National Academy of Sciences
ISSN:0027-8424
Publisher DOI:10.1073/pnas.1106325108
PubMed ID:21987789
Permanent URL: http://doi.org/10.5167/uzh-53806

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations