UZH-Logo

Maintenance Infos

Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species


Krattinger, S G; Lagudah, E S; Wicker, T; Risk, J M; Ashton, A R; Selter, L L; Matsumoto, T; Keller, B (2011). Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. The Plant Journal, 65(3):392-403.

Abstract

The Triticum aestivum (bread wheat) disease resistance gene Lr34 confers durable, race non-specific protection against three fungal pathogens, and has been a highly relevant gene for wheat breeding since the green revolution. Lr34, located on chromosome 7D, encodes an ATP-binding cassette (ABC) transporter. Both wheat cultivars with and without Lr34-based resistance encode a putatively functional protein that differ by only two amino acid polymorphisms. In this study, we focused on the identification and characterization of homoeologous and orthologous Lr34 genes in hexaploid wheat and other grasses. In hexaploid wheat we found an expressed and putatively functional Lr34 homoeolog located on chromosome 4A, designated Lr34-B. Another homoeologous Lr34 copy, located on chromosome 7A, was disrupted by the insertion of repetitive elements. Protein sequences of LR34-B and LR34 were 97% identical. Orthologous Lr34 genes were detected in the genomes of Oryza sativa (rice) and Sorghum bicolor (sorghum). Zea mays (maize), Brachypodium distachyon and Hordeum vulgare (barley) lacked Lr34 orthologs, indicating independent deletion of this particular ABC transporter. Lr34 was part of a gene-rich island on the wheat D genome. We found gene colinearity on the homoeologous A and B genomes of hexaploid wheat, but little microcolinearity in other grasses. The homoeologous LR34-B protein and the orthologs from rice and sorghum have the susceptible haplotype for the two critical polymorphisms distinguishing the LR34 proteins from susceptible and resistant wheat cultivars. We conclude that the particular Lr34-haplotype found in resistant wheat cultivars is unique. It probably resulted from functional gene diversification that occurred after the polyploidization event that was at the origin of cultivated bread wheat.

The Triticum aestivum (bread wheat) disease resistance gene Lr34 confers durable, race non-specific protection against three fungal pathogens, and has been a highly relevant gene for wheat breeding since the green revolution. Lr34, located on chromosome 7D, encodes an ATP-binding cassette (ABC) transporter. Both wheat cultivars with and without Lr34-based resistance encode a putatively functional protein that differ by only two amino acid polymorphisms. In this study, we focused on the identification and characterization of homoeologous and orthologous Lr34 genes in hexaploid wheat and other grasses. In hexaploid wheat we found an expressed and putatively functional Lr34 homoeolog located on chromosome 4A, designated Lr34-B. Another homoeologous Lr34 copy, located on chromosome 7A, was disrupted by the insertion of repetitive elements. Protein sequences of LR34-B and LR34 were 97% identical. Orthologous Lr34 genes were detected in the genomes of Oryza sativa (rice) and Sorghum bicolor (sorghum). Zea mays (maize), Brachypodium distachyon and Hordeum vulgare (barley) lacked Lr34 orthologs, indicating independent deletion of this particular ABC transporter. Lr34 was part of a gene-rich island on the wheat D genome. We found gene colinearity on the homoeologous A and B genomes of hexaploid wheat, but little microcolinearity in other grasses. The homoeologous LR34-B protein and the orthologs from rice and sorghum have the susceptible haplotype for the two critical polymorphisms distinguishing the LR34 proteins from susceptible and resistant wheat cultivars. We conclude that the particular Lr34-haplotype found in resistant wheat cultivars is unique. It probably resulted from functional gene diversification that occurred after the polyploidization event that was at the origin of cultivated bread wheat.

Citations

33 citations in Web of Science®
31 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

163 downloads since deposited on 03 Jan 2012
23 downloads since 12 months
Detailed statistics

Additional indexing

Contributors:Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:February 2011
Deposited On:03 Jan 2012 17:41
Last Modified:05 Apr 2016 15:18
Publisher:Wiley-Blackwell
ISSN:0960-7412
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:https://doi.org/10.1111/j.1365-313X.2010.04430.x
PubMed ID:21265893
Permanent URL: https://doi.org/10.5167/uzh-53880

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 841kB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 8MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations