UZH-Logo

How trunk turns affect locomotion when you are not looking where you go


Duysens, J; Duysens, J P; Bastiaanse, C M; van Sprundel, M; Schubert, M; Smits-Engelsman, B C (2008). How trunk turns affect locomotion when you are not looking where you go. Human Movement Science, 27(5):759-770.

Abstract

How well do we maintain heading direction during walking while we look at objects beside our path by rotating our eyes, head, or trunk? Common experience indicates that it may be fairly hazardous not to look where you are going. In the present study, 12 young adults walked on a treadmill while they followed a moving dot along a horizontal line with their gaze by rotating primarily either their eyes, head, or trunk for amplitudes of up to 25 degrees . During walking the movement of the center of pressure (COP) was monitored using force transducers under a treadmill. Under normal light conditions, the participants showed little lateral deviation of the COP from the heading direction when they performed the eye or head movement task during walking, even when optic flow information was limited. In contrast, trunk rotations led to a doubling of the COP deviation in the mediolateral direction. Some of this deviation was attributed to foot rotation. Participants tended to point their feet in the gaze direction when making trunk turns. The tendency of the feet to be aligned with the trunk is likely to be due to a preference to have feet and body in the same orientation. Such alignment is weaker for the feet with respect to head position and it is absent with respect to eye position. It is argued that feet and trunk orientation are normally tightly coupled during gait and that it requires special abilities to move both segments independently when walking.

How well do we maintain heading direction during walking while we look at objects beside our path by rotating our eyes, head, or trunk? Common experience indicates that it may be fairly hazardous not to look where you are going. In the present study, 12 young adults walked on a treadmill while they followed a moving dot along a horizontal line with their gaze by rotating primarily either their eyes, head, or trunk for amplitudes of up to 25 degrees . During walking the movement of the center of pressure (COP) was monitored using force transducers under a treadmill. Under normal light conditions, the participants showed little lateral deviation of the COP from the heading direction when they performed the eye or head movement task during walking, even when optic flow information was limited. In contrast, trunk rotations led to a doubling of the COP deviation in the mediolateral direction. Some of this deviation was attributed to foot rotation. Participants tended to point their feet in the gaze direction when making trunk turns. The tendency of the feet to be aligned with the trunk is likely to be due to a preference to have feet and body in the same orientation. Such alignment is weaker for the feet with respect to head position and it is absent with respect to eye position. It is argued that feet and trunk orientation are normally tightly coupled during gait and that it requires special abilities to move both segments independently when walking.

Citations

6 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:October 2008
Deposited On:17 Nov 2008 13:38
Last Modified:05 Apr 2016 12:33
Publisher:Elsevier
ISSN:0167-9457
Publisher DOI:10.1016/j.humov.2008.04.004
PubMed ID:18639359

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations