Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-5395

Bethmann, K; Fritschy, J M; Brandt, C; Löscher, W (2008). Antiepileptic drug resistant rats differ from drug responsive rats in GABA A receptor subunit expression in a model of temporal lobe epilepsy. Neurobiology of Disease, 31(2):169-187.

View at publisher


Epidemiological data indicate that 20-40% of the patients with epilepsy are refractory to treatment with antiepileptic drugs (AEDs). The mechanisms underlying pharmacoresistance in epilepsy are unclear, but several plausible hypotheses have emerged, including loss of AED target sensitivity in the epileptic brain, decreased AED concentrations at brain targets because of localized overexpression of drug efflux transporters in epileptogenic brain tissue, and network alterations in response to brain damage associated with epilepsy. Rat models of epilepsy in which part of the animals are resistant to treatment with AEDs offer a means to investigate the mechanisms underlying AED resistance. In the present study, AED-responsive and AED-resistant rats were selected from a model in which spontaneous recurrent seizures develop after a status epilepticus induced by electrical stimulation of the basolateral amygdala. For selection into responders and nonresponders, epileptic rats were treated over two weeks by phenobarbital. Subsequent histological examination showed neurodegeneration of the CA1, CA3 and dentate hilus in only one of eight responders but five of six nonresponders (P=0.0256). Based on previous studies in AED-resistant rats of this model, we hypothesized that changes in the structure and function of inhibitory GABA(A) receptors may contribute to drug resistance. We therefore analyzed the distribution and expression of several GABA(A) receptor subunits (alpha1, alpha2, alpha 3, alpha 4, alpha 5, beta2/3, and gamma 2) immunohistochemically with specific antibodies in the hippocampal formation of responders, nonresponders and nonepileptic controls. In nonresponders, decreased subunit staining was observed in CA1, CA2, CA3, and dentate gyrus, whereas much less widespread alterations were determined in responders. Furthermore, upregulation of the alpha 4-subunit was observed in the CA1 of nonresponders. Our data suggest that alterations in GABA(A) receptor subtypes may be involved in resistance to AEDs.


28 citations in Web of Science®
31 citations in Scopus®
Google Scholar™



75 downloads since deposited on 17 Nov 2008
40 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:31 August 2008
Deposited On:17 Nov 2008 08:29
Last Modified:05 Apr 2016 12:33
Publisher DOI:10.1016/j.nbd.2008.01.005
PubMed ID:18562204

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page