Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-54015

McDonald, C L; Steinbach, K; Kern, F; Schweigreiter, R; Martin, R; Bandtlow, C E; Reindl, M (2011). Nogo receptor is involved in the adhesion of dendritic cells to myelin. Journal of Neuroinflammation, 8:113.

Published Version
View at publisher



Nogo-66 receptor NgR1 and its structural homologue NgR2 are binding proteins for a number of myelin-associated inhibitory factors. After neuronal injury, these inhibitory factors are responsible for preventing axonal outgrowth via their interactions with NgR1 and NgR2 expressed on neurons. In vitro, cells expressing NgR1/2 are inhibited from adhering to and spreading on a myelin substrate. Neuronal injury also results in the presence of dendritic cells (DCs) in the central nervous system, where they can come into contact with myelin debris. The exact mechanisms of interaction of immune cells with CNS myelin are, however, poorly understood.

Human DCs were differentiated from peripheral blood monocytes and mouse DCs were differentiated from wild type and NgR1/NgR2 double knockout bone marrow precursors. NgR1 and NgR2 expression were determined with quantitative real time PCR and immunoblot, and adhesion of cells to myelin was quantified.

We demonstrate that human immature myeloid DCs express NgR1 and NgR2, which are then down-regulated upon maturation. Human mature DCs also adhere to a much higher extent to a myelin substrate than immature DCs. We observe the same effect when the cells are plated on Nogo-66-His (binding peptide for NgR1), but not on control proteins. Mature DCs taken from Ngr1/2 knockout mice adhere to a much higher extent to myelin compared to wild type mouse DCs. In addition, Ngr1/2 knockout had no effect on in vitro DC differentiation or phenotype.

These results indicate that a lack of NgR1/2 expression promotes the adhesion of DCs to myelin. This interaction could be important in neuroinflammatory disorders such as multiple sclerosis in which peripheral immune cells come into contact with myelin debris.


10 citations in Web of Science®
12 citations in Scopus®
Google Scholar™



28 downloads since deposited on 11 Jan 2012
14 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Deposited On:11 Jan 2012 20:56
Last Modified:05 Apr 2016 15:18
Publisher:BioMed Central
Publisher DOI:10.1186/1742-2094-8-113
PubMed ID:21906273

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page