UZH-Logo

Maintenance Infos

Cross-language ontology learning


Hjelm, Hans; Volk, Martin (2011). Cross-language ontology learning. In: Wong, Wilson; Liu, Wei; Bennamoun, Mohammed. Ontology learning and knowledge discovery using the web: challenges and recent advances. Hershey, PA: IGI Global, 272-297.

Abstract

A formal ontology does not contain lexical knowledge; it is by nature language-independent. Mappings can be added between the ontology and, arbitrarily, many lexica in any number of languages. The result of this operation is what is here referred to as a cross-language ontology. A cross-language ontology can be a useful resource for machine translation or cross-language information retrieval. This chapter focuses on ways of automatically building an ontology by exploiting cross-language information from parallel corpora. The goal is to improve the automatic learning results compared to learning an ontology from resources in a single language. The authors present a framework for cross-language ontology learning, providing a setting in which cross-language evidence (data) can be integrated and quantified. The aim is to investigate the following question: Can cross-language data teach us more than data from a single language for the ontology learning task?

A formal ontology does not contain lexical knowledge; it is by nature language-independent. Mappings can be added between the ontology and, arbitrarily, many lexica in any number of languages. The result of this operation is what is here referred to as a cross-language ontology. A cross-language ontology can be a useful resource for machine translation or cross-language information retrieval. This chapter focuses on ways of automatically building an ontology by exploiting cross-language information from parallel corpora. The goal is to improve the automatic learning results compared to learning an ontology from resources in a single language. The authors present a framework for cross-language ontology learning, providing a setting in which cross-language evidence (data) can be integrated and quantified. The aim is to investigate the following question: Can cross-language data teach us more than data from a single language for the ontology learning task?

Citations

Altmetrics

Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Date:2011
Deposited On:03 Jan 2012 17:01
Last Modified:05 Apr 2016 15:19
Publisher:IGI Global
ISBN:978-1-60960-625-1
Publisher DOI:10.4018/978-1-60960-625-1.ch014
Official URL:http://www.igi-global.com/chapter/cross-language-ontology-learning/53891
Related URLs:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-8414
Other Identification Number:merlin-id:6205

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations