Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-54350

Jiménez-Torres, J J; Pichardo, B; Lake, G; Throop, H (2011). Effect of different stellar galactic environments on planetary discs I. The solar neighbourhood and the birth cloud of the sun. Monthly Notices of the Royal Astronomical Society, 418(2):1272-1284.

[img]
Preview
Accepted Version
PDF
911kB

Abstract

We have computed trajectories, distances and times of closest approaches to the Sun by stars in the solar neighbourhood with known position, radial velocity and proper motions. For this purpose, we have used a full potential model of the Galaxy that reproduces the local z-force, the Oort constants, the local escape velocity and the rotation curve of the Galaxy. From our sample, we constructed initial conditions, within observational uncertainties, with a Monte Carlo scheme for the 12 most suspicious candidates because of their small tangential motion. We find that the star Gliese 710 will have the closest approach to the Sun, with a distance of approximately 0.34 pc in 1.36 Myr in the future. We show that the effect of a flyby with the characteristics of Gliese 710 on a 100 au test particle disc representing the Solar system is negligible. However, since there is a lack of 6D data for a large percentage of stars in the solar neighbourhood, closer approaches may exist. We calculate parameters of passing stars that would cause notable effects on the solar disc. Regarding the birth cloud of the Sun, we performed experiments to reproduce roughly the observed orbital parameters such as eccentricities and inclinations of the Kuiper belt. It is now known that in Galactic environments, such as stellar formation regions, the stellar densities of new born stars are high enough to produce close encounters within 200 au. Moreover, in these Galactic environments, the velocity dispersion is relatively low, typically σ˜ 1-3 km s-1. We find that with a velocity dispersion of ˜1 km s-1 and an approach distance of about 150 au, typical of these regions, we obtain approximately the eccentricities and inclinations seen in the current Solar system. Simple analytical calculations of stellar encounters effects on the Oort Cloud are presented.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
DDC:530 Physics
Language:English
Date:December 2011
Deposited On:18 Feb 2012 15:51
Last Modified:14 Feb 2014 20:34
Publisher:Wiley-Blackwell
ISSN:0035-8711 (P) 1365-2966 (E)
Additional Information:The definitive version is available at www3.interscience.wiley.com
Publisher DOI:10.1111/j.1365-2966.2011.19579.x
Related URLs:http://arxiv.org/abs/1108.2412
Citations:Web of Science®. Times Cited: 7
Google Scholar™
Scopus®. Citation Count: 8

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page