Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-54417

Stewart, K R; Kaufmann, T; Bullock, J S; Barton, E J; Maller, A H; Diemand, J; Wadsley, J (2011). Orbiting circumgalactic gas as a signature of cosmological accretion. Astrophysical Journal, 738(1):39.

Accepted Version
PDF (Version 2)
View at publisher
Accepted Version
PDF (Version 1)


We use cosmological smoothed particle hydrodynamic simulations to study the kinematic signatures of cool gas accretion onto a pair of well-resolved galaxy halos. We find that cold-flow streams and gas-rich mergers produce a circumgalactic component of cool gas that generally orbits with high angular momentum about the galaxy halo before falling in to build the disk. This signature of cosmological accretion should be observable using background-object absorption-line studies as features that are offset from the galaxy's systemic velocity by ~100 km s-1. In most cases, the accreted gas co-rotates with the central disk in the form of a warped, extended cold flow disk, such that the observed velocity offset will be in the same direction as galaxy rotation, appearing in sight lines that avoid the galactic poles. This prediction provides a means to observationally distinguish accreted gas from outflow gas: the accreted gas will show large one-sided velocity offsets in absorption-line studies while radial/bi-conical outflows will not (except possibly in special polar projections). Such a signature of rotation has already been seen in studies of intermediate-redshift galaxy-absorber pairs, and we suggest that these observations may be among the first to provide indirect observational evidence for cold accretion onto galactic halos. This cold-mode halo gas typically has ~3-5 times more specific angular momentum than the dark matter. The associated cold-mode disk configurations are likely related to extended H I/extended UV disks that are seen around galaxies in the local universe. The fraction of galaxies with extended cold flow disks and associated offset absorption-line gas should decrease around bright galaxies at low redshift as cold-mode accretion dies out.


50 citations in Web of Science®
26 citations in Scopus®
Google Scholar™



42 downloads since deposited on 18 Feb 2012
13 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Date:September 2011
Deposited On:18 Feb 2012 10:10
Last Modified:05 Apr 2016 15:20
Publisher:IOP Publishing
ISSN:0004-637X (P) 1538-4357 (E)
Publisher DOI:10.1088/0004-637X/738/1/39
Related URLs:http://arxiv.org/abs/1103.4388

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page