Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-54439

Jetzer, P; Tortora, C (2011). Constraints from the CMB temperature and other common observational data sets on variable dark energy density models. Physical Review D, 84(4):043517.

Accepted Version
View at publisher


The thermodynamic and dynamical properties of a variable dark energy model with density scaling as ρx∝(1+z)m, z being the redshift, are discussed following the outline of Jetzer et al. [ P. Jetzer, D. Puy, M. Signore and C. Tortora Gen. Relativ. Gravit. 43 1083 (2011)]. These kinds of models are proven to lead to the creation/disruption of matter and radiation, which affect the cosmic evolution of both matter and radiation components in the Universe. In particular, we have concentrated on the temperature-redshift relation of radiation, which has been constrained using a very recent collection of cosmic microwave background (CMB) temperature measurements up to z∼3. For the first time, we have combined this observational probe with a set of independent measurements (Supernovae Ia distance moduli, CMB anisotropy, large-scale structure and observational data for the Hubble parameter), which are commonly adopted to constrain dark energy models. We find that, within the uncertainties, the model is indistinguishable from a cosmological constant which does not exchange any particles with other components. Anyway, while temperature measurements and Supernovae Ia tend to predict slightly decaying models, the contrary happens if CMB data are included. Future observations, in particular, measurements of CMB temperature at large redshift, will allow to give firmer bounds on the effective equation of state parameter weff of this kind of dark energy model.

© 2011 American Physical Society


9 citations in Web of Science®
10 citations in Scopus®
Google Scholar™



27 downloads since deposited on 19 Feb 2012
9 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Date:August 2011
Deposited On:19 Feb 2012 10:11
Last Modified:05 Apr 2016 15:20
Publisher:American Physical Society
ISSN:1550-7998 (P) 1089-4918 (E)
Publisher DOI:10.1103/PhysRevD.84.043517
Related URLs:http://arxiv.org/abs/1107.4610

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page