UZH-Logo

The cold gas content of bulgeless dwarf galaxies


Pilkington, K; Gibson, B K; Calura, F; Brooks, A M; Mayer, L; Brook, C B; Stinson, G S; Thacker, R J; Few, C G; Cunnama, D; Wadsley, J (2011). The cold gas content of bulgeless dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 417(4):2891-2898.

Abstract

We present an analysis of the neutral hydrogen (H I) properties of a fully cosmological hydrodynamical dwarf galaxy, run with varying simulation parameters. As reported by Governato et al., the high-resolution, high star formation density threshold version of this galaxy is the first simulation to result in the successful reproduction of a (dwarf) spiral galaxy without any associated stellar bulge. We have set out to compare in detail the H I distribution and kinematics of this simulated bulgeless disc with what is observed in a sample of nearby dwarfs. To do so, we extracted the radial gas density profiles, velocity dispersion (e.g. velocity ellipsoid and turbulence) and the power spectrum of structure within the cold interstellar medium (ISM) from the simulations. The highest resolution dwarf, when using a high-density star formation threshold comparable to densities of giant molecular clouds, possesses bulk characteristics consistent with those observed in nature, though the cold gas is not as radially extended as that observed in nearby dwarfs, resulting in somewhat excessive surface densities. The lines-of-sight velocity dispersion radial profiles have values that are in good agreement with the observed dwarf galaxies, but due to the fact that only the streaming velocities of particles are tracked, a correction to include the thermal velocities can lead to profiles that are quite flat. The ISM power spectra of the simulations appear to possess more power on smaller spatial scales than that of the Small Magellanic Cloud. We conclude that unavoidable limitations remain due to the unresolved physics of star formation and feedback within parsec-scale molecular clouds.

We present an analysis of the neutral hydrogen (H I) properties of a fully cosmological hydrodynamical dwarf galaxy, run with varying simulation parameters. As reported by Governato et al., the high-resolution, high star formation density threshold version of this galaxy is the first simulation to result in the successful reproduction of a (dwarf) spiral galaxy without any associated stellar bulge. We have set out to compare in detail the H I distribution and kinematics of this simulated bulgeless disc with what is observed in a sample of nearby dwarfs. To do so, we extracted the radial gas density profiles, velocity dispersion (e.g. velocity ellipsoid and turbulence) and the power spectrum of structure within the cold interstellar medium (ISM) from the simulations. The highest resolution dwarf, when using a high-density star formation threshold comparable to densities of giant molecular clouds, possesses bulk characteristics consistent with those observed in nature, though the cold gas is not as radially extended as that observed in nearby dwarfs, resulting in somewhat excessive surface densities. The lines-of-sight velocity dispersion radial profiles have values that are in good agreement with the observed dwarf galaxies, but due to the fact that only the streaming velocities of particles are tracked, a correction to include the thermal velocities can lead to profiles that are quite flat. The ISM power spectra of the simulations appear to possess more power on smaller spatial scales than that of the Small Magellanic Cloud. We conclude that unavoidable limitations remain due to the unresolved physics of star formation and feedback within parsec-scale molecular clouds.

Citations

15 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

45 downloads since deposited on 18 Feb 2012
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:November 2011
Deposited On:18 Feb 2012 16:31
Last Modified:05 Apr 2016 15:20
Publisher:Wiley-Blackwell
ISSN:0035-8711 (P) 1365-2966 (E)
Additional Information:The definitive version is available at www3.interscience.wiley.com
Publisher DOI:10.1111/j.1365-2966.2011.19450.x
Related URLs:http://arxiv.org/abs/1107.2922
Permanent URL: http://doi.org/10.5167/uzh-54452

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 303kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations