UZH-Logo

Maintenance Infos

The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals


Boisson-Dernier, A; Kessler, S A; Grossniklaus, U (2011). The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals. Journal of Experimental Botany, 62(5):1581-1591.

Abstract

In plants, organ formation and cell elongation require the constant adjustment of the dynamic and adaptable cell wall in response to environmental cues as well as internal regulators, such as light, mechanical stresses, pathogen attacks, phytohormones, and other signaling molecules. The molecular mechanisms that perceive these cues and translate them into cellular responses to maintain integrity and remodelling of the carbohydrate-rich cell wall for the coordination of cell growth are still poorly understood. In the last 3 years, the function of six membrane-localized receptor-like kinases (RLKs) belonging to the CrRLK1L family has been linked to the control of cell elongation in vegetative and reproductive development. Moreover, the presence of putative carbohydrate-binding domains in the extracellular domains of these CrRLK1Ls makes this receptor family an excellent candidate for coordinating cell growth, cell-cell communication, and constant cell wall remodelling during the plant life cycle.

In plants, organ formation and cell elongation require the constant adjustment of the dynamic and adaptable cell wall in response to environmental cues as well as internal regulators, such as light, mechanical stresses, pathogen attacks, phytohormones, and other signaling molecules. The molecular mechanisms that perceive these cues and translate them into cellular responses to maintain integrity and remodelling of the carbohydrate-rich cell wall for the coordination of cell growth are still poorly understood. In the last 3 years, the function of six membrane-localized receptor-like kinases (RLKs) belonging to the CrRLK1L family has been linked to the control of cell elongation in vegetative and reproductive development. Moreover, the presence of putative carbohydrate-binding domains in the extracellular domains of these CrRLK1Ls makes this receptor family an excellent candidate for coordinating cell growth, cell-cell communication, and constant cell wall remodelling during the plant life cycle.

Citations

44 citations in Web of Science®
44 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 27 Jan 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2011
Deposited On:27 Jan 2012 15:29
Last Modified:05 Apr 2016 15:20
Publisher:Oxford University Press
ISSN:0022-0957
Publisher DOI:10.1093/jxb/erq445
PubMed ID:21252257
Permanent URL: http://doi.org/10.5167/uzh-54538

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 706kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations