Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-54742

Leier, D; Ferreras, I; Saha, P; Falco, E E (2011). Resolving the baryon-fraction profile in lensing galaxies. Astrophysical Journal, 740(2):97.

[img]
Preview
Accepted Version
PDF (Version 2)
912kB

View at publisher
[img]
Preview
Accepted Version
PDF (Version 1)
841kB

Abstract

The study of the distribution of baryonic matter within dark halos enriches our understanding of galaxy formation. We show the radial dependence of stellar baryon-fraction curves derived for 21 lensing galaxies from the CfA-Arizona Space Telescope LEns Survey (CASTLES) by means of stellar population synthesis and pixel-based mass reconstruction. The sample covers a stellar mass range of Ms ~= 2 × 109-3 × 1011 M sun (solar masses) which corresponds to a total enclosed mass range of ML ~= 7 × 109-3 × 1012 M sun on radial scales from 0.25R e to 5R e (effective radii). By examining the Ms and ML dependence on radial distance to the center of each galaxy, we find that there are pairs of lenses on small to intermediate mass scales which approach at large radii the same values for their enclosed total mass but exhibit very different stellar masses and stellar baryon fractions. This peculiar behavior subsides for the most massive lensing galaxies. All the baryon-fraction profiles show that the dark matter halo overtakes the stellar content between 1.5 and 2.5R e. At 3R e most of the stellar component is enclosed. We find evidence for a stellar baryon fraction steadily declining over the full mass range. Furthermore, we shed light on the Fundamental Plane puzzle by showing that the slope of the ML (< R)-to-Ms (< R) relation approaches the mass-to-light relation of recent Fundamental Plane studies at large radii. We also introduce novel concentration indices c = R90/R50 for stellar and total mass profiles (i.e., the ratio of radii enclosing 90% and 50% of the stellar or total mass). We show that the value c = 2.6 originally determined by light profiles which separates early-type galaxies from late-type galaxies also holds for stellar mass. In particular, less massive dark matter halos turn out to be influenced by the distribution of stellar matter on resolved scales below 10 kpc. The ongoing study of resolved baryon-fraction profiles will make it possible to evaluate the validity of star formation models as well as adiabatic contraction prescriptions commonly used in simulations.

Citations

9 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

64 downloads since deposited on 18 Feb 2012
23 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
DDC:530 Physics
Language:English
Date:October 2011
Deposited On:18 Feb 2012 09:50
Last Modified:08 Jul 2014 05:23
Publisher:IOP Publishing
ISSN:0004-637X (P) 1538-4357 (E)
Publisher DOI:10.1088/0004-637X/740/2/97
Related URLs:http://arxiv.org/abs/1102.3433

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page