UZH-Logo

Maintenance Infos

Resolving the baryon-fraction profile in lensing galaxies


Leier, D; Ferreras, I; Saha, P; Falco, E E (2011). Resolving the baryon-fraction profile in lensing galaxies. Astrophysical Journal, 740(2):97.

Abstract

The study of the distribution of baryonic matter within dark halos enriches our understanding of galaxy formation. We show the radial dependence of stellar baryon-fraction curves derived for 21 lensing galaxies from the CfA-Arizona Space Telescope LEns Survey (CASTLES) by means of stellar population synthesis and pixel-based mass reconstruction. The sample covers a stellar mass range of Ms ~= 2 × 109-3 × 1011 M sun (solar masses) which corresponds to a total enclosed mass range of ML ~= 7 × 109-3 × 1012 M sun on radial scales from 0.25R e to 5R e (effective radii). By examining the Ms and ML dependence on radial distance to the center of each galaxy, we find that there are pairs of lenses on small to intermediate mass scales which approach at large radii the same values for their enclosed total mass but exhibit very different stellar masses and stellar baryon fractions. This peculiar behavior subsides for the most massive lensing galaxies. All the baryon-fraction profiles show that the dark matter halo overtakes the stellar content between 1.5 and 2.5R e. At 3R e most of the stellar component is enclosed. We find evidence for a stellar baryon fraction steadily declining over the full mass range. Furthermore, we shed light on the Fundamental Plane puzzle by showing that the slope of the ML (< R)-to-Ms (< R) relation approaches the mass-to-light relation of recent Fundamental Plane studies at large radii. We also introduce novel concentration indices c = R90/R50 for stellar and total mass profiles (i.e., the ratio of radii enclosing 90% and 50% of the stellar or total mass). We show that the value c = 2.6 originally determined by light profiles which separates early-type galaxies from late-type galaxies also holds for stellar mass. In particular, less massive dark matter halos turn out to be influenced by the distribution of stellar matter on resolved scales below 10 kpc. The ongoing study of resolved baryon-fraction profiles will make it possible to evaluate the validity of star formation models as well as adiabatic contraction prescriptions commonly used in simulations.

The study of the distribution of baryonic matter within dark halos enriches our understanding of galaxy formation. We show the radial dependence of stellar baryon-fraction curves derived for 21 lensing galaxies from the CfA-Arizona Space Telescope LEns Survey (CASTLES) by means of stellar population synthesis and pixel-based mass reconstruction. The sample covers a stellar mass range of Ms ~= 2 × 109-3 × 1011 M sun (solar masses) which corresponds to a total enclosed mass range of ML ~= 7 × 109-3 × 1012 M sun on radial scales from 0.25R e to 5R e (effective radii). By examining the Ms and ML dependence on radial distance to the center of each galaxy, we find that there are pairs of lenses on small to intermediate mass scales which approach at large radii the same values for their enclosed total mass but exhibit very different stellar masses and stellar baryon fractions. This peculiar behavior subsides for the most massive lensing galaxies. All the baryon-fraction profiles show that the dark matter halo overtakes the stellar content between 1.5 and 2.5R e. At 3R e most of the stellar component is enclosed. We find evidence for a stellar baryon fraction steadily declining over the full mass range. Furthermore, we shed light on the Fundamental Plane puzzle by showing that the slope of the ML (< R)-to-Ms (< R) relation approaches the mass-to-light relation of recent Fundamental Plane studies at large radii. We also introduce novel concentration indices c = R90/R50 for stellar and total mass profiles (i.e., the ratio of radii enclosing 90% and 50% of the stellar or total mass). We show that the value c = 2.6 originally determined by light profiles which separates early-type galaxies from late-type galaxies also holds for stellar mass. In particular, less massive dark matter halos turn out to be influenced by the distribution of stellar matter on resolved scales below 10 kpc. The ongoing study of resolved baryon-fraction profiles will make it possible to evaluate the validity of star formation models as well as adiabatic contraction prescriptions commonly used in simulations.

Citations

16 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

98 downloads since deposited on 18 Feb 2012
28 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:October 2011
Deposited On:18 Feb 2012 09:50
Last Modified:05 Apr 2016 15:21
Publisher:IOP Publishing
ISSN:0004-637X (P) 1538-4357 (E)
Publisher DOI:10.1088/0004-637X/740/2/97
Related URLs:http://arxiv.org/abs/1102.3433
Permanent URL: http://doi.org/10.5167/uzh-54742

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF (Version 2)
Size: 912kB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF (Version 1)
Size: 841kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations