Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-54769

Kritsuk, A G; Nordlund, Å; Collins, D; Padoan, P; Norman, M L; Abel, T; Banerjee, R; Federrath, C; Flock, M; Lee, D; Li, P S; Müller, W C; Teyssier, R (2011). Comparing numerical methods for isothermal magnetized supersonic turbulence. Astrophysical Journal, 737(1):13.

[img]
Preview
Accepted Version
PDF (Version 2)
437kB
[img]
Preview
Accepted Version
PDF (Version 1)
433kB

Abstract

Many astrophysical applications involve magnetized turbulent flows with shock waves. Ab initio star formation simulations require a robust representation of supersonic turbulence in molecular clouds on a wide range of scales imposing stringent demands on the quality of numerical algorithms. We employ simulations of supersonic super-Alfvénic turbulence decay as a benchmark test problem to assess and compare the performance of nine popular astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. These applications employ a variety of numerical approaches, including both split and unsplit, finite difference and finite volume, divergence preserving and divergence cleaning, a variety of Riemann solvers, and a range of spatial reconstruction and time integration techniques. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss the convergence of various characteristics for the turbulence decay test and the impact of various components of numerical schemes on the accuracy of solutions. The nine codes gave qualitatively the same results, implying that they are all performing reasonably well and are useful for scientific applications. We show that the best performing codes employ a consistently high order of accuracy for spatial reconstruction of the evolved fields, transverse gradient interpolation, conservation law update step, and Lorentz force computation. The best results are achieved with divergence-free evolution of the magnetic field using the constrained transport method and using little to no explicit artificial viscosity. Codes that fall short in one or more of these areas are still useful, but they must compensate for higher numerical dissipation with higher numerical resolution. This paper is the largest, most comprehensive MHD code comparison on an application-like test problem to date. We hope this work will help developers improve their numerical algorithms while helping users to make informed choices about choosing optimal applications for their specific astrophysical problems.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
DDC:530 Physics
Language:English
Date:August 2011
Deposited On:18 Feb 2012 10:30
Last Modified:12 Jul 2014 13:07
Publisher:IOP Publishing
ISSN:0004-637X (P) 1538-4357 (E)
Publisher DOI:10.1088/0004-637X/737/1/13
Related URLs:http://arxiv.org/abs/1103.5525
Citations:Web of Science®. Times Cited: 25
Google Scholar™
Scopus®. Citation Count: 20

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page