Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Røysland, K; Gran, J M; Ledergerber, B; von Wyl, V; Young, J; Aalen, O O (2011). Analyzing direct and indirect effects of treatment using dynamic path analysis applied to data from the Swiss HIV Cohort Study. Statistics in Medicine, 30(24):2947-2958.

Full text not available from this repository.

View at publisher


When applying survival analysis, such as Cox regression, to data from major clinical trials or other studies, often only baseline covariates are used. This is typically the case even if updated covariates are available throughout the observation period, which leaves large amounts of information unused. The main reason for this is that such time-dependent covariates often are internal to the disease process, as they are influenced by treatment, and therefore lead to confounded estimates of the treatment effect. There are, however, methods to exploit such covariate information in a useful way. We study the method of dynamic path analysis applied to data from the Swiss HIV Cohort Study. To adjust for time-dependent confounding between treatment and the outcome 'AIDS or death', we carried out the analysis on a sequence of mimicked randomized trials constructed from the original cohort data. To analyze these trials together, regular dynamic path analysis is extended to a composite analysis of weighted dynamic path models. Results using a simple path model, with one indirect effect mediated through current HIV-1 RNA level, show that most or all of the total effect go through HIV-1 RNA for the first 4 years. A similar model, but with CD4 level as mediating variable, shows a weaker indirect effect, but the results are in the same direction. There are many reasons to be cautious when drawing conclusions from estimates of direct and indirect effects. Dynamic path analysis is however a useful tool to explore underlying processes, which are ignored in regular analyses.


3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™


Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Infectious Diseases
Dewey Decimal Classification:610 Medicine & health
Deposited On:15 Jan 2012 18:09
Last Modified:05 Apr 2016 15:21
Publisher DOI:10.1002/sim.4324
PubMed ID:21800346

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page