Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-54839

House, E; Brook, C B; Gibson, B K; Sanchez-Blazquez, P; Courty, S; Few, C G; Governato, F; Kawata, D; Roskar, R; Steinmetz, M; Stinson, G S; Teyssier, R (2011). Disc heating: comparing the Milky Way with cosmological simulations. Monthly Notices of the Royal Astronomical Society, 415(3):2652-2664.

[img]
Preview
Accepted Version
PDF
685kB

View at publisher

Abstract

We present an analysis of a suite of simulations run with different particle- and grid-based cosmological hydrodynamical codes and compare them with observational data of the Milky Way. This is the first study to make comparisons of properties of galaxies simulated with particle- and grid-based codes. Our analysis indicates that there is broad agreement between these different modelling techniques. We study the velocity dispersion-age relation for disc stars at z= 0 and find that four of the simulations are more consistent with observations by Holmberg, Nordstroem & Andersen in which the stellar disc appears to undergo continual/secular heating. Two other simulations are in better agreement with the Quillen & Garnett observations that suggest 'saturation' in the heating profile for young stars in the disc. None of the simulations has thin discs as old as that of the Milky Way. We also analyse the kinematics of disc stars at the time of their birth for different epochs in the galaxies' evolution and find that in some simulations old stars are born cold within the disc and are subsequently heated, while other simulations possess old stellar populations which are born relatively hot. The models which are in better agreement with observations of the Milky Way's stellar disc undergo significantly lower minor-merger/assembly activity after the last major merger, that is, once the disc has formed. All of the simulations are significantly 'hotter' than the Milky Way disc; on top of the effects of mergers, we find a 'floor' in the dispersion that is related to the underlying treatment of the heating and cooling of the interstellar medium, and the low density threshold which such codes use for star formation. This finding has important implications for all studies of disc heating that use hydrodynamical codes.

Citations

22 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

29 downloads since deposited on 18 Feb 2012
15 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
DDC:530 Physics
Language:English
Date:August 2011
Deposited On:18 Feb 2012 16:49
Last Modified:20 Dec 2013 07:29
Publisher:Wiley-Blackwell
ISSN:0035-8711 (P) 1365-2966 (E)
Additional Information:The definitive version is available at www3.interscience.wiley.com
Publisher DOI:10.1111/j.1365-2966.2011.18891.x
Related URLs:http://arxiv.org/abs/1104.2037

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page