UZH-Logo

Maintenance Infos

Expression of cyclooxygenase-1 and -2 in normal and glaucomatous human eyes


Maihöfner, C; Schlötzer-Schrehardt, U; Gühring, H; Zeilhofer, H U; Naumann, G O; Pahl, A; Mardin, C; Tamm, E R; Brune, K (2001). Expression of cyclooxygenase-1 and -2 in normal and glaucomatous human eyes. Investigative Ophthalmology and Visual Science, 42(11):2616-2624.

Abstract

PURPOSE: Primary open-angle glaucoma (POAG) is the predominant form of chronic glaucoma, but the underlying pathologic mechanisms are largely unknown. Because prostaglandins (PGs) have been introduced into POAG treatment with remarkable success, this study was undertaken to investigate whether a change in the expression of the PG-synthesizing enzymes cyclooxygenase (COX)-1 and -2 might be involved in the pathogenesis of POAG. METHODS: Expression of COX-1 and -2 was assessed by confocal laser microscopy, immunohistochemistry, Western blot analysis, and real-time RT-PCR in human eyes with different forms of glaucoma (primary open-angle, angle-closure, congenital juvenile, and steroid-induced), as well as in age-matched control eyes. Additionally, PGE2 was measured in aqueous humor by means of an enzyme-linked immunoassay as a product of COX activity. RESULTS: In normal eyes, ocular COX-1 and -2 expression were largely confined to the nonpigmented secretory epithelium of the ciliary body. By immunohistochemistry and real-time RT-PCR, COX-2 expression was completely lost in the nonpigmented secretory epithelium of the ciliary body of eyes with end-stage POAG, whereas COX-1 expression was unchanged. By immunohistochemistry, in the ciliary bodies of eyes in five patients with diagnosis of early POAG, eyes in two had complete loss of COX-2 expression and in three showed only a few remaining scattered COX-2-expressing cells. COX-2 expression in the ciliary body was also lost in patients with steroid-induced glaucoma and was reduced in patients receiving topical steroid treatment. Eyes of patients with either congenital juvenile or angle-closure glaucoma showed COX-2 expression indistinguishable from control eyes. Aqueous humor of eyes with POAG contained significantly less PGE2 than control eyes. CONCLUSIONS: Both cyclooxygenase isoforms are constitutively expressed in the normal human eye. Specific loss of COX-2 expression in the nonpigmented secretory epithelium of the ciliary body appears to be linked to the occurrence of POAG and steroid-induced glaucoma.

Abstract

PURPOSE: Primary open-angle glaucoma (POAG) is the predominant form of chronic glaucoma, but the underlying pathologic mechanisms are largely unknown. Because prostaglandins (PGs) have been introduced into POAG treatment with remarkable success, this study was undertaken to investigate whether a change in the expression of the PG-synthesizing enzymes cyclooxygenase (COX)-1 and -2 might be involved in the pathogenesis of POAG. METHODS: Expression of COX-1 and -2 was assessed by confocal laser microscopy, immunohistochemistry, Western blot analysis, and real-time RT-PCR in human eyes with different forms of glaucoma (primary open-angle, angle-closure, congenital juvenile, and steroid-induced), as well as in age-matched control eyes. Additionally, PGE2 was measured in aqueous humor by means of an enzyme-linked immunoassay as a product of COX activity. RESULTS: In normal eyes, ocular COX-1 and -2 expression were largely confined to the nonpigmented secretory epithelium of the ciliary body. By immunohistochemistry and real-time RT-PCR, COX-2 expression was completely lost in the nonpigmented secretory epithelium of the ciliary body of eyes with end-stage POAG, whereas COX-1 expression was unchanged. By immunohistochemistry, in the ciliary bodies of eyes in five patients with diagnosis of early POAG, eyes in two had complete loss of COX-2 expression and in three showed only a few remaining scattered COX-2-expressing cells. COX-2 expression in the ciliary body was also lost in patients with steroid-induced glaucoma and was reduced in patients receiving topical steroid treatment. Eyes of patients with either congenital juvenile or angle-closure glaucoma showed COX-2 expression indistinguishable from control eyes. Aqueous humor of eyes with POAG contained significantly less PGE2 than control eyes. CONCLUSIONS: Both cyclooxygenase isoforms are constitutively expressed in the normal human eye. Specific loss of COX-2 expression in the nonpigmented secretory epithelium of the ciliary body appears to be linked to the occurrence of POAG and steroid-induced glaucoma.

Citations

55 citations in Web of Science®
64 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

174 downloads since deposited on 26 Mar 2009
61 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:October 2001
Deposited On:26 Mar 2009 12:42
Last Modified:05 Apr 2016 12:34
Publisher:Association for Research in Vision and Ophthalmology
ISSN:0146-0404
Official URL:http://www.iovs.org/cgi/reprint/42/11/2510
Related URLs:http://www.iovs.org/cgi/content/abstract/42/11/2510 (Publisher)
PubMed ID:11581208

Download

[img]
Preview
Filetype: PDF
Size: 615kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations