Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-5517

Ahmadi, S; Kotalla, C; Gühring, H; Takeshima, H; Pahl, A; Zeilhofer, H U (2001). Modulation of synaptic transmission by nociceptin/orphanin FQ and nocistatin in the spinal cord dorsal horn of mutant mice lacking the nociceptin/orphanin FQ receptor. Molecular Pharmacology, 59(3):612-618.

[img] PDF - Registered users only
250kB

Abstract

Nociceptin/orphanin FQ (N/OFQ) and nocistatin (NST) are two neuropeptides derived from the same precursor protein that exhibit opposing effects on spinal neurotransmission and nociception. Here, we have used whole-cell, patch-clamp recordings from visually identified neurons in spinal cord dorsal horn slices of genetically modified mice to investigate the role of the N/OFQ receptor (N/OFQ-R) in the modulatory action of both peptides on excitatory glutamatergic and inhibitory glycinergic and gamma-aminobutyric acid (GABA)-ergic synaptic transmission. In wild-type mice, N/OFQ selectively suppressed excitatory transmission in a concentration-dependent manner but left inhibitory synaptic transmission unaffected. In contrast, NST reduced only inhibitory but not alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated excitatory synaptic transmission. N/OFQ-mediated inhibition of excitatory transmission was completely absent in N/OFQ-R receptor-deficient (N/OFQ-R(-/-)) mice and significantly reduced in heterozygous (N/OFQ-R(+/-)) mice, whereas the action of NST on inhibitory neurotransmission was completely retained. To test for the relevance of these results for spinal nociception, we investigated the effects of intrathecally injected N/OFQ in the mouse formalin test, an animal model of tonic pain. N/OFQ (3 nmol/mouse) induced significant antinociception in wild-type mice, but had no antinociceptive effects in N/OFQ-R(-/-) mice. These results indicate that the inhibitory action of N/OFQ on excitatory glutamatergic synaptic transmission and its spinal antinociceptive action are mediated via the N/OFQ receptor, whereas the action of NST is independent of this receptor.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:March 2001
Deposited On:26 Mar 2009 12:40
Last Modified:10 Dec 2013 05:56
Publisher:American Society for Pharmacology and Experimental Therapeutics
ISSN:0026-895X
PubMed ID:11179457
Citations:Web of Science®. Times Cited: 34
Google Scholar™
Scopus®. Citation Count: 34

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page