UZH-Logo

Maintenance Infos

Calcium-dependent inactivation of neuronal calcium channel currents is independent of calcineurin


Zeilhofer, H U; Blank, N M; Neuhuber, W L; Swandulla, D (2000). Calcium-dependent inactivation of neuronal calcium channel currents is independent of calcineurin. Neuroscience, 95(1):235-241.

Abstract

Dephosphorylation by the Ca2+/calmodulin-dependent phosphatase calcineurin has been suggested as an important mechanism of Ca2+-dependent inactivation of voltage-gated Ca2+ channels. We have tested whether calcineurin plays a role in the inactivation process of two types of high-voltage-activated Ca2+ channels (L and N type) widely expressed in the central nervous system, using the immunosuppressive drug FK506 (tacrolimus), which inhibits calcineurin after binding to intracellular FK506 binding proteins. Inactivation of L- and N-type Ca2+ channels was studied in a rat pituitary tumor cell line (GH3) and chicken dorsal root ganglion neurons, respectively. With the use of antisera directed against the calcineurin subunit B and the 12,000 mol. wt binding protein, we show that both proteins are present in the cytoplasm of GH3 cells and chicken dorsal root ganglion neurons. Ionic currents through voltage-gated Ca2+ channels were investigated in the perforated-patch and whole-cell configurations of the patch-clamp technique. The inactivation of L- as well as N-type Ca2+ currents could be well fitted with a bi-exponential function. Inactivation was largely reduced when Ba2+ substituted for extracellular Ca2+ or when the Ca2+ chelator EGTA was present intracellularly, indicating that both types of Ca2+ currents exhibited Ca2+-dependent inactivation. Extracellular (perforated-patch configuration) or intracellular (whole-cell configuration) application of FK506 to inactivate calcineurin had no effect on the amplitude and time-course of Ca2+ channel current inactivation of either L- or N-type Ca2+ channels. In addition, we found that recovery from inactivation and rundown of N-type Ca2+ channel currents were not affected by FK506. Our results provide direct evidence that the calcium-dependent enzyme calcineurin is not involved in the inactivation process of the two Ca2+ channel types which are important for neuronal functioning, such as gene expression and transmitter release.

Abstract

Dephosphorylation by the Ca2+/calmodulin-dependent phosphatase calcineurin has been suggested as an important mechanism of Ca2+-dependent inactivation of voltage-gated Ca2+ channels. We have tested whether calcineurin plays a role in the inactivation process of two types of high-voltage-activated Ca2+ channels (L and N type) widely expressed in the central nervous system, using the immunosuppressive drug FK506 (tacrolimus), which inhibits calcineurin after binding to intracellular FK506 binding proteins. Inactivation of L- and N-type Ca2+ channels was studied in a rat pituitary tumor cell line (GH3) and chicken dorsal root ganglion neurons, respectively. With the use of antisera directed against the calcineurin subunit B and the 12,000 mol. wt binding protein, we show that both proteins are present in the cytoplasm of GH3 cells and chicken dorsal root ganglion neurons. Ionic currents through voltage-gated Ca2+ channels were investigated in the perforated-patch and whole-cell configurations of the patch-clamp technique. The inactivation of L- as well as N-type Ca2+ currents could be well fitted with a bi-exponential function. Inactivation was largely reduced when Ba2+ substituted for extracellular Ca2+ or when the Ca2+ chelator EGTA was present intracellularly, indicating that both types of Ca2+ currents exhibited Ca2+-dependent inactivation. Extracellular (perforated-patch configuration) or intracellular (whole-cell configuration) application of FK506 to inactivate calcineurin had no effect on the amplitude and time-course of Ca2+ channel current inactivation of either L- or N-type Ca2+ channels. In addition, we found that recovery from inactivation and rundown of N-type Ca2+ channel currents were not affected by FK506. Our results provide direct evidence that the calcium-dependent enzyme calcineurin is not involved in the inactivation process of the two Ca2+ channel types which are important for neuronal functioning, such as gene expression and transmitter release.

Citations

20 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 27 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2000
Deposited On:27 Mar 2009 06:52
Last Modified:05 Apr 2016 12:34
Publisher:Elsevier
ISSN:0306-4522
Publisher DOI:https://doi.org/10.1016/S0306-4522(99)00434-0
PubMed ID:10619480

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations