UZH-Logo

Maintenance Infos

A theoretical framework for combining techniques that probe the link between galaxies and dark matter


Leauthaud, A; Tinker, J; Behroozi, P S; Busha, M T; Wechsler, R (2011). A theoretical framework for combining techniques that probe the link between galaxies and dark matter. Astrophysical Journal, 738(1):45.

Abstract

We develop a theoretical framework that combines measurements of galaxy-galaxy lensing, galaxy clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring each of these probes individually, attempts to combine them are still in their infancy. These combinations have the potential to elucidate the galaxy-dark matter connection and the galaxy formation physics responsible for it, as well as to constrain cosmological parameters and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the galaxy-dark matter connection based on standard halo occupation distribution techniques. Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe. We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance for each probe. Finally, we analyze how trends in each of the three observables impact the derived parameters of the model. In particular, we investigate various features of the observed galaxy stellar mass function (low-mass slope, "plateau," knee, and high-mass cutoff) and show how each feature is related to the underlying relationship between stellar and halo mass. We demonstrate that the observed "plateau" feature in the stellar mass function at M * ~ 2 × 1010 M sun is due to the transition that occurs in the stellar-to-halo mass relation at Mh ~ 1012 M sun from a low-mass power-law regime to a sub-exponential function at higher stellar mass.

We develop a theoretical framework that combines measurements of galaxy-galaxy lensing, galaxy clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring each of these probes individually, attempts to combine them are still in their infancy. These combinations have the potential to elucidate the galaxy-dark matter connection and the galaxy formation physics responsible for it, as well as to constrain cosmological parameters and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the galaxy-dark matter connection based on standard halo occupation distribution techniques. Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe. We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance for each probe. Finally, we analyze how trends in each of the three observables impact the derived parameters of the model. In particular, we investigate various features of the observed galaxy stellar mass function (low-mass slope, "plateau," knee, and high-mass cutoff) and show how each feature is related to the underlying relationship between stellar and halo mass. We demonstrate that the observed "plateau" feature in the stellar mass function at M * ~ 2 × 1010 M sun is due to the transition that occurs in the stellar-to-halo mass relation at Mh ~ 1012 M sun from a low-mass power-law regime to a sub-exponential function at higher stellar mass.

Citations

58 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

85 downloads since deposited on 18 Feb 2012
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:September 2011
Deposited On:18 Feb 2012 09:58
Last Modified:05 Apr 2016 15:23
Publisher:IOP Publishing
ISSN:0004-637X (P) 1538-4357 (E)
Publisher DOI:https://doi.org/10.1088/0004-637X/738/1/45
Related URLs:http://arxiv.org/abs/1103.2077
Permanent URL: https://doi.org/10.5167/uzh-55340

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF (Version 2)
Size: 730kB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF (Version 1)
Size: 733kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations