Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-55340

Leauthaud, A; Tinker, J; Behroozi, P S; Busha, M T; Wechsler, R (2011). A theoretical framework for combining techniques that probe the link between galaxies and dark matter. Astrophysical Journal, 738(1):45.

[img]
Preview
Accepted Version
PDF (Version 2)
730kB

View at publisher
[img]
Preview
Accepted Version
PDF (Version 1)
733kB

Abstract

We develop a theoretical framework that combines measurements of galaxy-galaxy lensing, galaxy clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring each of these probes individually, attempts to combine them are still in their infancy. These combinations have the potential to elucidate the galaxy-dark matter connection and the galaxy formation physics responsible for it, as well as to constrain cosmological parameters and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the galaxy-dark matter connection based on standard halo occupation distribution techniques. Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe. We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance for each probe. Finally, we analyze how trends in each of the three observables impact the derived parameters of the model. In particular, we investigate various features of the observed galaxy stellar mass function (low-mass slope, "plateau," knee, and high-mass cutoff) and show how each feature is related to the underlying relationship between stellar and halo mass. We demonstrate that the observed "plateau" feature in the stellar mass function at M * ~ 2 × 1010 M sun is due to the transition that occurs in the stellar-to-halo mass relation at Mh ~ 1012 M sun from a low-mass power-law regime to a sub-exponential function at higher stellar mass.

Citations

33 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

42 downloads since deposited on 18 Feb 2012
7 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
DDC:530 Physics
Language:English
Date:September 2011
Deposited On:18 Feb 2012 09:58
Last Modified:16 Jun 2014 12:04
Publisher:IOP Publishing
ISSN:0004-637X (P) 1538-4357 (E)
Publisher DOI:10.1088/0004-637X/738/1/45
Related URLs:http://arxiv.org/abs/1103.2077

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page