Quick Search:

is currently disabled due to reindexing of the ZORA database. Please use Advanced Search.
uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-55360

de Paolis, F; Gurzadyan, V G; Ingrosso, G; Jetzer, P; Nucita, A A; Qadir, A; Vetrugno, D; Kashin, A L; Khachatryan, H G; Mirzoyan, S (2011). Possible detection of the M 31 rotation in WMAP data. Astronomy & Astrophysics, 534:L8.

[img]
Preview
Accepted Version
PDF
461kB

Abstract

Data on the cosmic microwave background (CMB) radiation by the Wilkinson Microwave Anisotropy Probe (WMAP) had a profound impact on the understanding of a variety of physical processes in the early phases of the Universe and on the estimation of the cosmological parameters. Here, the 7-year WMAP data are used to trace the disk and the halo of the nearby giant spiral galaxy M 31. We analyzed the temperature excess in three WMAP bands (W, V, and Q) by dividing the region of the sky around M 31 into several concentric circular areas. An asymmetry in the mean microwave temperature in the M 31 disk along the direction of the M 31 rotation is observed with a temperature contrast up to ≃ 130 μK/pixel. We also find a temperature asymmetry in the M 31 halo, which is much weaker than for the disk, up to a galactocentric distance of about 10° (≃ 120 kpc) with a peak temperature contrast of about 40 μK/pixel. We studied the robustness of these possible detections by considering 500 random control fields in the real WMAP maps and simulating 500 sky maps from the best-fitted cosmological parameters. By comparing the obtained temperature contrast profiles with the real ones towards the M 31 galaxy, we find that the temperature asymmetry in the M 31 disk is fairly robust, while the effect in the halo is weaker. Although the confidence level of the signal is not high, if estimated purely statistically, which could be expected due to the weakness of the effect, the geometrical structure of the temperature asymmetry points towards a definite effect modulated by the rotation of the M 31 halo. This result might open a new way to probe these relatively less studied galactic objects using high-accuracy CMB measurements, such as those with the Planck satellite or planned balloon-based experiments, which could prove or disprove our conclusions.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
DDC:530 Physics
Language:English
Date:October 2011
Deposited On:19 Feb 2012 16:11
Last Modified:16 Jan 2014 01:10
Publisher:EDP Sciences
ISSN:0004-6361 (P) 1432-0746 (E)
Publisher DOI:10.1051/0004-6361/201117846
Related URLs:http://arxiv.org/abs/1109.6290
Citations:Web of Science®. Times Cited: 3
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page