UZH-Logo

Maintenance Infos

Moving a robot arm by exploiting its complex compliant morphology


Hauser, Helmut; Griesbacher, Gernot (2011). Moving a robot arm by exploiting its complex compliant morphology. In: 2nd International Conference on Morphological Computation, Venice, 12 September 2011 - 14 September 2011.

Abstract

The vision of morphological computation proposes that the complexity of compliant bodies of biological systems is not accidentally, but rather that it can contribute to the computations, which are needed for a successful interaction with the environment. We demonstrate in a simulation that a compliant, highly nonlinear body (simulated as a random network of masses and springs) can serve as a computational resource, which allows the end-effector of a two-link robot arm to move autonomously on a complex trajectory. Remarkably, simple linear and static feedback loops from the state of the compliant structure back to the robot arm torques suffice. This suggests that by outsourcing parts of the nonlinear and dynamic computation to the compliant morphology the remaining computational task is much simpler and can be even represented by some static, linear weights.

The vision of morphological computation proposes that the complexity of compliant bodies of biological systems is not accidentally, but rather that it can contribute to the computations, which are needed for a successful interaction with the environment. We demonstrate in a simulation that a compliant, highly nonlinear body (simulated as a random network of masses and springs) can serve as a computational resource, which allows the end-effector of a two-link robot arm to move autonomously on a complex trajectory. Remarkably, simple linear and static feedback loops from the state of the compliant structure back to the robot arm torques suffice. This suggests that by outsourcing parts of the nonlinear and dynamic computation to the compliant morphology the remaining computational task is much simpler and can be even represented by some static, linear weights.

Downloads

148 downloads since deposited on 07 Feb 2012
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Event End Date:14 September 2011
Deposited On:07 Feb 2012 08:17
Last Modified:05 Apr 2016 15:24
Series Name:Proceedings of the 2nd International Conference on Morphological Computation
Related URLs:http://morphcomp.org/
Other Identification Number:merlin-id:5055
Permanent URL: http://doi.org/10.5167/uzh-55590

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations