Abstract: OBJECTIVES: Cytochrome P450 2B6 (CYP2B6) is responsible for the metabolic clearance of efavirenz and single nucleotide polymorphisms (SNPs) in the CYP2B6 gene are associated with efavirenz pharmacokinetics. Since the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) correlate with CYP2B6 in liver, and a CAR polymorphism (rs2307424) and smoking correlate with efavirenz plasma concentrations, we investigated their association with early (<3 months) discontinuation of efavirenz therapy. METHODS: Three hundred and seventy-three patients initiating therapy with an efavirenz-based regimen were included (278 white patients and 95 black patients; 293 male). DNA was extracted from whole blood and genotyping for CYP2B6 (516G → T, rs3745274), CAR (540C → T, rs2307424) and PXR (44477T → C, rs1523130; 63396C → T, rs2472677; and 69789A → G, rs763645) was conducted. Binary logistic regression using the backwards method was employed to assess the influence of SNPs and demographics on early discontinuation. RESULTS: Of the 373 patients, 131 withdrew from therapy within the first 3 months. Black ethnicity (odds ratio (OR) = 2.81; P = 0.006), CAR rs2307424 CC (OR = 1.92; P = 0.007) and smoking status (OR = 0.45; P = 0.002) were associated with discontinuation within 3 months. CONCLUSIONS: These data indicate that genetic variability in CYP2B6 and CAR contributes to early treatment discontinuation for efavirenz-based antiretroviral regimens. Further studies are now required to define the clinical utility of these associations.
Cytochrome P450 2B6 (CYP2B6) and Constitutive androstane receptor (CAR) polymorphisms are associated with early discontinuation of efavirenz-containing regimens.

Christoph Wyen¹, Heidy Hendra¹, Marco Siccardi², Martin Platten¹, Hans Jaeger³, Thomas Harrer⁴, Stefan Esser⁵, Johannes R. Bogner⁶, Norbert H. Brockmeyer⁷, Bernhard Bieniek⁸, Juergen Rockstroh⁹, Christian Hoffmann¹⁰, Albrecht Stoehr¹¹, Claudia Michalik¹², Verena Dlugay¹³, Alexander Jetter¹⁴, Heribert Knechten¹⁵, Hartwig Klinker¹⁶, Adriane Skaletz-Rorowski¹⁷, Gerd Fätkenheuer¹, Deirdre Egan², David J Back², Andrew Owen²* on behalf of the German Competence Network for HIV/AIDS†

¹Department of Internal Medicine, University of Cologne, Cologne, Germany,
²Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK,
³HIV Research and Clinical Care Centre Munich, Munich, Germany,
⁴Department of Internal Medicine 3, University Hospital Erlangen, University of Erlangen-Nuremberg, Germany
⁵Department of Dermatology, University of Essen, Essen, Germany,
⁶Department of Internal Medicine, University of Munich, Munich, Germany,
⁷Department of Dermatology, Venerology and Allergology Ruhr-Universität Bochum, Bochum, Germany,
⁸PraxisCityOst, Berlin, Germany,
⁹Department of Internal Medicine, University of Bonn, Bonn, Germany,
¹⁰IPM Study Center, Hamburg/University of Schleswig Holstein, Kiel, Germany,
¹¹ifi-Institute for interdisciplinary medicine, Hamburg, Germany,
¹²Clinical Trials Centre Cologne ZKS, University of Cologne, Köln, Germany,
¹³Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Köln, Germany,
¹⁴Department of Clinical Pharmacology and Toxicology, Department of Internal Medicine, University Hospital Zurich, Zürich, Switzerland,
¹⁵PZB Blondelstrasse, Aachen, Germany,
¹⁶Department of Internal Medicine, University of Würzburg, Würzburg, Germany
¹⁷Competence Network for HIV/AIDS, Ruhr-Universität Bochum, Bochum, Germany

†Members of the German Competence Network for HIV/AIDS are listed in the Acknowledgement

Author for correspondence and reprints: Dr A Owen, Department of Pharmacology and Therapeutics, University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, U.K.
Tel No +44 (0) 151 794 5919
Fax No + 44 (0) 151 794 5656
E-mail: aowen@liv.ac.uk

Running headline: CYP2B6 and CAR SNPs and efavirenz discontinuation

Source of financial support
This work was funded by the UK Medical Research Council, the German Competence Network for HIV/AIDS and the BMBF (Bundesministerium für Bildung und Forschung; Grant: 01 KI 0771).

Text word count: 2671
Synopsis

Objectives: Cytochrome P450 2B6 (CYP2B6) is responsible for metabolic clearance of efavirenz and single nucleotide polymorphisms (SNPs) in the CYP2B6 gene are associated with efavirenz pharmacokinetics. Since the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) correlate with CYP2B6 in liver and a CAR polymorphism (rs2307424) and smoking correlate with efavirenz plasma concentrations, we investigated their association with early (<3 months) discontinuation of efavirenz therapy.

Methods: 373 patients initiating therapy with an efavirenz based regimen were included (278 White and 95 Black; 293 male). DNA was extracted from whole blood and genotyping for CYP2B6 (516G>T, rs3745274), CAR (540C>T; rs2307424) and PXR (44477T>C, rs1523130; 63396C>T, rs2472677; 69789A>G, rs763645) were conducted. Binary logistic regression by backwards method was used to assess the influence of SNPs and demographics on early discontinuation.

Results: Of the 373 patients, 131 withdrew from therapy within the first 3 months. Black ethnicity (Odds Ratio (OR) = 0.27; p = 0.0001), CYP2B6 516TT (OR = 2.81; p = 0.006), CAR rs2307424 CC (OR = 1.92; p = 0.007) and smoking status (OR = 0.45; p = 0.002) were associated with discontinuation within three months.

Conclusions: These data indicate that genetic variability in CYP2B6 and CAR contribute to early treatment discontinuation for efavirenz-based antiretroviral regimens. Further studies are now required to define the clinical utility of these associations.

Key words: Pharmacogenetics, pharmacokinetics, metabolism, drug disposition.
Introduction

Efavirenz treatment is associated with Central nervous system (CNS) or neuropsychiatric side effects in a large proportion of patients (~25%–70%) and can give symptoms such as dizziness, headache, abnormal dreams and sleep disturbance, mood changes, anxiety, dizziness and impaired concentration. ¹⁻³ CNS side effects normally arise in the first days/weeks of treatment and for a small minority of patients can be prolonged for several months or emerge after numerous weeks of treatment ⁴ but do not always result in discontinuation of therapy. Discontinuation of efavirenz-containing regimens has been reported with various frequencies in different studies, ranging from 5 to 20%, and neuropsychiatric side effects account for the majority of discontinuation cases. ³, ⁵⁻⁷ The causes of CNS and other side effects related to efavirenz containing regimens have not been fully characterised but some studies indicate that neuropsychiatric side effects are associated with high plasma concentrations, particularly in the first weeks of treatment. ⁸⁻¹⁰

Phase I metabolism of efavirenz is predominantly catalysed by cytochrome P450 2B6 (CYP2B6) and single nucleotide polymorphisms (SNPs) within the *CYP2B6* gene are associated with altered hepatic CYP2B6 expression and activity.¹¹ The role of the 516G>T (rs3745274) SNP in pharmacokinetics of efavirenz has been studied extensively.¹²⁻¹⁹ In addition to CYP2B6, a secondary route of phase I metabolism of efavirenz is catalysed by CYP2A6 and CYP2A6 polymorphisms have also recently been identified as determinants of efavirenz plasma concentrations.²⁰⁻²³

The primary metabolite of phase I metabolism, 8-hydroxy efavirenz then undergoes glucuronidation prior to excretion in urine and bile. This phase II metabolism has
recently been attributed to UDP-glucuronosyltransferase isoform 2B7 (UGT2B7) \(^{24}\) and evidence is emerging that \textit{UGT2B7} polymorphisms are also associated with efavirenz plasma concentrations. \(^{20}\) Hence, a thorough knowledge of the routes of metabolism and elimination of efavirenz have successfully identified candidate genes for pharmacogenetic studies.

The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are known to regulate a complex network of phase I and phase II metabolic enzymes in response to xenobiotics. Importantly, CAR and PXR expression also correlate with \textit{CYP2B6} \(^{25}\) and \textit{CYP2A6} \(^{26}\) expression in liver, even in the absence of enzyme inducers and xenobiotics. Activators of CAR have also been shown to induce \textit{UGT2B} genes in vivo \(^{27}\) and so CAR appears to play a role in basal and inducible regulation of the enzymes involved in efavirenz metabolism.

Therefore, we hypothesised that inter-individual variability in CAR and PXR caused, for example, by polymorphisms, would result in additional inter-individual variability in \textit{CYP2B6}, \textit{CYP2A6} and \textit{UGT2B7}. Single nucleotide polymorphisms have been reported in \textit{PXR} \(^{28}\) and \textit{CAR} \(^{29}\) genes and we have previously shown an association of a \textit{PXR} SNP (63396C>T; rs2472677) with unboosted atazanavir plasma concentrations \(^{30}\) and an association of a \textit{CAR} SNP (540C>T; rs2307424) with plasma concentrations of efavirenz. \(^{31}\)

The aim of this study was to investigate the association of \textit{CYP2B6} (516G>T, rs3745274), \textit{CYP2A6} (CYP2A6*9B, rs8192726), \textit{UGT2B7} (735A>G, rs28365062; 802T>C, rs7439366), \textit{CAR} (540C>T; rs2307424) and \textit{PXR} (44477T>C, rs1523130;
63396C>T, rs2472677; 69789A>G, rs763645) polymorphisms with discontinuation within 3 months of initiating efavirenz-containing regimens. In addition, the association with demographic factors including ethnicity, smoking habits and gender were also investigated.
Patients and Methods

Patients

A total of 373 patients who were on stable efavirenz containing Highly Active Antiretroviral Therapy (HAART) for at least 3 months (n=242; control group) or who discontinued efavirenz containing HAART within 3 months (n = 131; early discontinuation group) were included in this cohort study.

We included patients of the cohort of the German Competence Network for HIV/AIDS (KompNet Cohort) with documented stable efavirenz treatment for at least 3 months and compared with those who discontinued efavirenz containing HAART within 3 months. A further inclusion criterion was the availability of already stored EDTA-samples. All concomitant medications were documented and patients were excluded from the analysis if receiving drugs with known drug interactions. No patients were receiving anti-TB treatments.

Out of 480 patients with stable efavirenz containing HAART identified as a potential control group, stored EDTA samples were available from 255 patients. In 13 of these patients genotyping for one or more SNP was not successful. Therefore 242 patients on stable therapy were included in the final analysis. The median duration of efavirenz therapy in this group was 48 months (range 5 – 99 months). 213 patients were identified with early discontinuation of efavirenz-containing HAART, therefore fulfilling the inclusion criteria. In 131 patients EDTA samples were available and were therefore included in the analysis. The median duration or efavirenz exposure in this group was 1.1 month (range 0.2 – 3 months).
Whole blood was provided by the KompNet Cohort. In this prospective multicenter, German-wide cohort semi-annual follow-up visits are documented and clinical and demographic data are collected. EDTA-samples are taken at enrolment and three years afterwards, serum samples are collected at every follow up visit. Demographic and clinical data were collected on: age, gender, weight, height, adherence (evaluated through pharmacy reports), ethnicity and qualitative smoking status. Ethical approval was granted by the ethics committee of the Ruhr-Universität Bochum, Germany, and local ethics committee approval and informed consent was obtained at each site.

Genotyping

Total genomic DNA was isolated using the QIAamp DNA mini kit according to the manufacturer’s instructions. Following extraction, purity was assessed by comparing the A_{260} and A_{280} ratio. DNA was quantified using PicoGreen® (PG) dsDNA Quantitation Reagent (Molecular Probes, CA, USA) and normalised to 20 ng/μL. For CYP2B6 pre-amplification was first conducted to discriminate from the CYP2B6 pseudogene (CYP2B7) by modification of previously reported methods. Genotyping for CYP2B6 (516G>T), CYP2A6 (*9B), UGT2B7 (735A>G, 802T>C), CAR (540C>T) and PXR (44477T>C, 63396C>T, 69789A>G) was then performed by real-time PCR allelic discrimination using standard methodology (95°C for 15 minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute) in a DNA Engine Opticon® 2 system (MJ Research Inc., USA). For CYP2B6 516G>T (rs3745274), CYP2A6*9B (rs8192726), CAR 540C>T (rs2307424), PXR 44477T>C (rs1523130) and PXR 7635A>G (rs6785049) Applied Biosystem pre-validated assays were utilised. The assay IDs were C___7817765_60, C__29560333_20, C__25746794_20, C___9152783_20 and C__29280426_10, respectively. For UGT2B7 735A>G (rs28365062) the forward primer,
reverse primer, A probe and G probe were CCTAAAGTAATTATCTTGTCATCCACCTT, CGTCAGCTTTCCCCATTGTCT, ACCCACTACATTATCTGT-VIC and CCCACTACGTTATCTGT-FAM, respectively. For UGT2B7 802T>C (rs7439366) the forward primer, reverse primer, C probe and T probe were CTGACGTATGGCTTATTCGAAACTC, TGGAGTCTCTCCAACAAAAATCAACAT, AGTGGATGAGGAAACTT-VIC, and AGAGTGGAATAAGGAAACTT-FAM, respectively. For PXR 63396C>T (rs2472677) the forward primer, reverse primer, C probe and T probe were GCACAAACATTTTCAATTTCAATGAAGTTCA, CATTCGGAAGACTTTATTCTATTTCTGTCT, CCATATTTTTTCTGATTTAA-VIC and CCATATTTTTTTTGATTTAA-FAM, respectively.

Statistical analysis

All data are given as frequency number (percentage) unless otherwise stated. Genotypes were tested for Hardy-Weinberg equilibrium by Chi-square test of observed versus predicted (from allele frequency) genotype frequencies. Statistical significance was assessed using the Chi-square test, Cramer’s V test or the linear by linear test for differences in qualitative variables. Univariate and multivariate associations were assessed with SPSS v16 (SPSS Inc., Chicago IL, USA) using logistic regression with backward method. Continuous variables are expressed as Median (Interquartile Range, IQR). A statistical trend was defined as a P value <0.1. Statistical significance was set at P <0.05.
Results

This was a cohort study and all patients were recruited between 01.01.2006 - 01.10.2009. 242 patients, who were on stable efavirenz containing HAART for at least 3 months, were included in the control group and 131 patients were in the early discontinuation group (discontinuation of efavirenz containing HAART within 3 months). Treatment was discontinued for unknown reason in 55 patients (42%), for self reported CNS related side effects in 72 cases (55%), virological failure in one case (1%), elevated liver enzymes or other toxicities in four cases (3%). No documented cases of depression were encountered in these patients. Baseline characteristics of patients entered in the study are presented in Table 1.

The backbone therapy was comparable between the discontinuation group and the control group. Preferential NRTI-based backbone therapies consisting either of tenofovir/emtricitabine or lamivudine/zidovudine were used. The remaining patients were receiving alternative backbone or NRTI-free therapies. Within the early discontinuation group, 42 of 131 patients were taking lamivudine/zidovudine (or zidovudine) (32%) and 59 of 131 patients were taking tenofovir/emtricitabine (45%). Within the control group 63 of 242 patients were taking lamivudine/zidovudine (26%) and 114 of 242 patients were receiving tenofovir/emtricitabine (47%).

Association of demographics and backbone with early (<3 month) treatment discontinuation

A higher proportion of white patients (39.2%; 109 out of 278) discontinued within 3 months than compared to black patients (23.2%; 22 out of 95; p = 0.005). Smokers exhibited a lower frequency of discontinuation (30.9%; 73 out of 236) compared to non-
smokers (42.3%; 58 out of 137; p = 0.026). No other associations (p < 0.05) or trends (p < 0.10) were evident with demographic factors such as age, sex, weight, height or BMI, even when stratified for ethnicity. 278 patients out of 373 had zidovudine, zidovudine/lamivudine or tenofovir/emtricitabine as backbone therapy. Frequency of zidovudine/lamivudine (or zidovudine) administration did not differ between patients that discontinued (42 out of 131; 32%) and patients that were stable on efavirenz (63 out of 242; 26%), p = 0.21. Similarly, frequency of tenofovir/emtricitabine administration did not differ between patients that discontinued (59 out of 131; 45%) and patients that were stable on efavirenz (114 out of 242; 47%), p = 0.71.

Allele frequencies according to ethnicity

The frequency of the allelic variants in white and black patients are summarised in Table 2. Differences in frequency of the variant alleles between ethnicity (black ethnicity as reference) were evident for \(\text{CAR rs2307424C>T} \) (Odds ratio [OR] = 2.69; \(P = 0.0001 \)), \(\text{CYP2B6 516G>T} \) (OR = 0.73; \(P = 0.087 \)), \(\text{CYP2B6 983T>C} \) (OR = 0; N/A), \(\text{UGT2B7 802T>C} \) (OR = 2.4; \(P = 0.0001 \)), \(\text{PXR 7635A>G} \) (OR = 0.14; \(P = 0.0001 \)), \(\text{PXR 44477T>C} \) (OR = 7.38; \(P = 0.0001 \)) and \(\text{PXR 63396C>T} \) (OR = 1.77; \(P = 0.009 \)).

Association of genetic factors with early (<3 month) treatment discontinuation

When considering the entire population, \(\text{CYP2B6 516G>T} \) was statistically associated with early (<3 month) treatment discontinuation. Discontinuation rate was 33.5% (57 out of 170) in the 516GG group compared to 32.5% (55 out of 169) in the 516GT group and 44.1% (15 out of 34) in the 516TT group (p = 0.03). Patients characterised by T homozygosity had a higher probability of early treatment discontinuation (55.9% vs 33%; \(P = 0.008 \)). A trend towards higher frequency of discontinuation among patients
characterised by CAR rs2307424 CC was also observed, with 38.9% (74 out of 190) of CC patients vs 30% (54 out of 180) of CT/TT patients discontinuing therapy before three months (p=0.071; CAR genotype data were unavailable for 3 patients). Patients with TT genotype for PXR 63396C>T had trend towards higher frequency of discontinuation (41.5%, 51 out 123) compared to patients with CT/CC genotype (32%; 80 out of 250; p = 0.072). Similarly, for UGT2B7 802T>C, patients with TC or CC genotype had trend towards higher frequency of discontinuation (37.5%; 101 out of 269) compared to patients with the TT genotype (28.2%; 29 out of 103; p = 0.089; UGT2B7 802 genotype was unavailable for 1 patient). No association (p < 0.05) or trend (p < 0.10) was observed for other polymorphisms.

When considering only white patients (n = 278) patients with CYP2B6 516 TT had higher discontinuation rate (58.3%, 14 out of 24) compared to patients with CYP2B6 516 GG/GT (95 out of 254 patients, p = 0.045). Moreover, white patients with CAR rs2307424 CC had a frequency of early discontinuation of 46.3% (56 out of 121) vs 32.5% (50 out of 154) for CT/TT patients (p = 0.019). In black patients CYP2B6 516 TT genotype was associated with higher discontinuation rate (50%; 5 out of 10) than CYP2B6 516 GG/GT patients (20%; 17 out of 85; p = 0.033). No other associations (p < 0.05) or trends (p < 0.10) were evident in either white or black patients.

Multivariate analysis by binary logistic regression

Multivariate logistic regression in the entire cohort confirmed the independent association of CYP2B6 516 and CAR rs2307424 genotypes with early (<3 month) treatment discontinuation. In addition to these genetic factors, ethnicity and smoking status were also identified as independent predictors. As shown in Table 3 the following
parameters were independently associated with treatment discontinuation: CYP2B6 516TT (OR, 2.81; 95% Confidence Interval (CI), 1.34 to 5.9; p = 0.006), CAR rs2307424CC (OR, 1.92; 95% CI, 1.2 to 3.07; p = 0.007), black ethnicity (OR, 0.27; 95% CI 0.14 to 0.50, p = 0.0001) and smoking status (OR, 0.45; 95% CI, 0.28 to 0.74; p = 0.002).

Composite analysis for genetic and demographic risk factors

To further confirm the association of these two polymorphisms with early discontinuation the CYP2B6 516T and CAR rs2307424 C alleles were classified as discontinuation-associated alleles. As shown in Figure 1A, the number of high discontinuation-associated alleles correlated with higher discontinuation. The rate of treatment discontinuation was: 25% (4 out of 16) for patients with no discontinuation-associated alleles, 29.6% (24 out of 81) for patients with one discontinuation-associated allele, 32.4% (48 out of 148) for patients with two alleles, 39.4% (43 out of 109) for patients with three alleles and 56.2% (9 out of 16) for patients with four alleles (p = 0.023; CAR genotype data were unavailable for 3 patients).

As shown in Figure 1B, the number of early discontinuation risk factors harboured by a patient (including CYP2B6 and CAR genetics, each allele counting as one risk factor; ethnicity; and smoking status) was associated with early discontinuation. The rate of early treatment discontinuation was 0% (n=1) for patients with no risk factors, 16.7% (3 out of 18) for patients with one risk factor, 23% (16 out of 69) for patients with two risk factors, 31% (45 out of 145) for patients with three risk factors, 43.9% (43 out of 98) for patients with four risk factors, 51.4% (19 out of 37) for patients with five risk factors and
100% (n=2) for patients with six risk factors (p = 0.0001; CAR genotype data were unavailable for 3 patients).
Discussion

Several studies have described an elevated frequency of CNS side effects in patients treated with efavirenz-based regimens, leading to treatment discontinuation primarily in the first week of treatment.3, 5-7 Inter-individual variability in metabolism and disposition genes for efavirenz may influence onset of side effects and therefore therapy discontinuation. \textit{CYP2B6} 516 has been identified as a major predictor of efavirenz plasma concentrations12-19 and a correlation between frequency of CNS side effects in white patients and slow-metaboliser genotypes (\textit{CYP2B6} 516TT and 983TT) was recently described.33 In the current cohort TT homozygosity for the \textit{CYP2B6} 516 G>T polymorphism was independently associated with early treatment discontinuation.

A novel association between a \textit{CAR} polymorphism (rs2307424) and plasma efavirenz concentrations was recently reported by some of the investigators involved in the present study.31 The discontinuation data presented here extends these findings to a clinical phenotype, showing significant association of CC genotype with early treatment discontinuation. These findings strengthen the role of \textit{CAR} in efavirenz disposition and pharmacokinetics, presumably through its role in the regulation of \textit{CYP2B6}.

A genetic composite of these two polymorphisms (\textit{CYP2B6} 516 C>T and \textit{CAR} rs2307424) was assessed and patients with more discontinuation-associated alleles (also the same as the high concentration-associated alleles 31) had a higher rate of discontinuation. This finding reinforces the hypothesis that early treatment discontinuation is associated with higher plasma concentrations. However, it must be noted that plasma efavirenz concentrations are higher in black patients than in white patients34, yet treatment discontinuation rates appear to be lower in black patients.35 In
the present study, white patients had a higher frequency of early discontinuation than black patients. Furthermore, the frequency of \textit{CYP2B6} and \textit{CAR} alleles associated with higher plasma efavirenz concentrations are more frequent in black patients. We hypothesise that this apparent paradox may be explained by inter-ethnic variability in other unknown genes involved in the aetiology of CNS toxicity.

Smoking status was also identified as being independently associated with early treatment discontinuation. We previously reported a trend towards an association between smoking and efavirenz plasma concentrations in the German Competence Network for HIV/AIDS19 and in a Chilean cohort.31 Interestingly, nicotine has previously been shown to activate nuclear receptors such as PXR and CAR36 and induction of \textit{CYP2B6} has been described.37 Furthermore, nicotine and efavirenz have an overlapping elimination pathway, both metabolised by \textit{CYP2B6} and \textit{CYP2A6}, providing another putative mechanisms for the interaction.38 Nicotine exposure has also been shown to influence blood-brain barrier permeability in-vivo39, 40 and may therefore have an effect on efavirenz diffusion in CNS, independently of effects on pharmacokinetics.

It must be noted that a major limitation of the current study is that the reasons for early discontinuation were not known for 42% of the cohort. However, of those discontinuing therapy for known reason, 94.7% discontinued due to CNS toxicity. Other reasons for an early treatment discontinuation (e.g. virological failure) usually lead to later (> 3 months) discontinuation or modification of therapy. For this reason it seems likely that in the majority of patients the reason for the treatment discontinuation was CNS toxicity. Moreover, the reported associations were also present when univariate logistic analysis was conducted for patients that discontinued due to known CNS toxicity (\(n = 72\)), \textit{CAR}
rs2307424CC (OR = 1.86, p = 0.037), CYP2B6 516TT (OR = 2.1, p = 0.122) and black ethnicity (OR = 0.42, p = 0.013). A potential additional limitation of this study is that no information was collected with respect to their adherence to medication.

In conclusion, our findings indicate that genetic variability in genes involved in the metabolism and disposition of efavirenz are determinants of early (<3 month) treatment discontinuation. These data provide evidence that smoking status may be associated with discontinuation. In-vitro studies to identify the mechanisms underpinning these associations and to identify toxicological targets in the brain are now warranted.
Acknowledgements

First, we thank all the patients participating in our cohort for providing their data and biomaterials to the cohort. We are grateful for all the work and dedication of the documentation officers and of the heads of our documenting sites. We thank the Ruhr-University Bochum for financial and structural encouragement. The Federal Ministry of Education and Research gave its ongoing financial support since 2002 (Grant No. BMBF 01 KI 0501). In addition, we thank the Clinical Trial Centre Cologne for its support in conducting the study (Grant No. BMBF 01 KN 0706).

†The following documenting sites currently contribute data to the basis-module of the KompNet cohort:

Gemeinschaftspraxis Driesener Straße, Berlin • Gemeinschaftspraxis Mehringdamm, Berlin • Gemeinschaftspraxis Turmstraße, Berlin • Gemeinschaftspraxis Fuggerstraße, Berlin • Praxiszentrum Kaiserdamm, Berlin • Universitätsklinikum Benjamin Franklin, Charité, Berlin • Dermatologische Klinik, Ruhr-Universität, Bochum • Klinikum, Dortmund • Universitätsklinikum, Duesseldorf • Medizinische Klinik 3, Universitätsklinikum, Erlangen • Klinik für Dermatologie, Universität Essen • HIVCENTER, Universitätsklinikum, Frankfurt • Ifi-Institut, Hamburg • Infektionsmedizinisches Centrum Hamburg (ICH), Hamburg • Medizinische Hochschule, Hannover • Praxis Georgstraße, Hannover • Gemeinschaftspraxis, Kriegsstraße, Karlsruhe • Städtisches Krankenhaus Kemperhof, Koblenz • Praxis Hohenstaufenring, Köln • Gemeinschaftspraxis Isartorplatz, Munich • MVZ Karlsplatz, HIV Research and Clinical Centre, Munich • Praxisgemeinschaft Franz Joseph-Straße, Munich • Klinikum, Osnabrück • Gemeinschaftspraxis Ulmer/Frietsch/Müller, Stuttgart
Furthermore, we would like to thank Gislea Kremer and Ellen Rund, Cologne for administrative assistance and Winfried Siffert, Essen for collecting and providing the blood samples of the German Competence Network for HIV/AIDS.

Funding

This work was funded by the UK Medical Research Council (G0800247), the German Competence Network for HIV/AIDS and the BMBF (Bundesministerium für Bildung und Forschung; Grant: 01 KI 0771). HH was supported by a scholarship of the Else Kroener foundation.

Transparency declarations

AO and DJB have received research funding from Boehringer Ingelheim, GlaxoSmithKline, Abbott laboratories, Pfizer, AstraZeneca, Tibotec, Merck and Roche Pharmaceuticals. GF has received honoraria for lectures and advisory boards from Abbott, Boehringer Ingelheim, Bristol Myers Squibb, Gilead, GlaxoSmithKline, Novartis, Pfizer, Roche, Schering Plough and Tibotec, CW has received honoraria for lectures and advisory boards from Abbott, Boehringer Ingelheim, Bristol Myers Squibb, VIIV, Gilead, Pfizer and Essex. All other authors: none to declare.
References

Table 1: Baseline characteristics of patients with stable efavirenz therapy and with early treatment discontinuation of efavirenz.

<table>
<thead>
<tr>
<th></th>
<th>On Therapy > 3 months</th>
<th>On therapy < 3 months</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>242</td>
<td>131</td>
<td>373</td>
</tr>
<tr>
<td>Male Gender</td>
<td>269</td>
<td>104</td>
<td>293 (78.6%)</td>
</tr>
<tr>
<td>White Ethnicity</td>
<td>264</td>
<td>109</td>
<td>278 (74.5%)</td>
</tr>
<tr>
<td>Median Age (IQR)</td>
<td>45 (40 - 51)</td>
<td>47 (41 - 53)</td>
<td>46 (26 - 82)</td>
</tr>
<tr>
<td>Median BMI (IQR)</td>
<td>23.5 (20.5 – 27.5)</td>
<td>23.5 (20.5 – 28)</td>
<td>24 (21-28)</td>
</tr>
<tr>
<td>Smoking</td>
<td>73 (55.7%)</td>
<td>163 (67.4%)</td>
<td>236 (63.3%)</td>
</tr>
<tr>
<td>Median Years Since Diagnosis (Range)</td>
<td>6 (1 - 12)</td>
<td>6 (1 - 12)</td>
<td>6 (1 - 12)</td>
</tr>
<tr>
<td>Viral load (Range)</td>
<td><50 (<50 – 8 x 105)</td>
<td>325 (<50 – 1 x 106)</td>
<td><50 (<50 – 1 x 106)</td>
</tr>
<tr>
<td>CD4 count (Range)</td>
<td>449 (12 – 3233)</td>
<td>325 (0 – 1260)</td>
<td>407 (0 – 3233)</td>
</tr>
</tbody>
</table>
Table 2. Allele frequencies in patients considering ethnicity. Frequency of the variant allele, odds ratio (OR) and p value are given.

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Variant allele in white (%)</th>
<th>Variant allele in blacks (%)</th>
<th>OR</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2B6 516G>T</td>
<td>167/556 (30%)</td>
<td>70/190 (37%)</td>
<td>0.73</td>
<td>0.087</td>
</tr>
<tr>
<td>CYP2B6 983T>C</td>
<td>0/556 (0%)</td>
<td>8/190 (4%)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CAR rs2307424C>T</td>
<td>180/550 (32.7%)</td>
<td>29/190 (15%)</td>
<td>2.69</td>
<td>0.0001</td>
</tr>
<tr>
<td>PXR 44477T>C</td>
<td>329/556 (59.1%)</td>
<td>30/190 (15.7%)</td>
<td>7.38</td>
<td>0.0001</td>
</tr>
<tr>
<td>PXR 63396C>T</td>
<td>339/556 (60.9%)</td>
<td>89/190 (46.8%)</td>
<td>1.77</td>
<td>0.009</td>
</tr>
<tr>
<td>PXR7635A>G</td>
<td>237/556 (42.6%)</td>
<td>158/188 (84%)</td>
<td>0.14</td>
<td>0.0001</td>
</tr>
<tr>
<td>CYP2A6*9B</td>
<td>40/556 (7.8%)</td>
<td>8/190 (4.2%)</td>
<td>1.78</td>
<td>0.17</td>
</tr>
<tr>
<td>UGT2B7 735A>G</td>
<td>69/556 (12.4%)</td>
<td>31/190 (16.3%)</td>
<td>0.68</td>
<td>0.101</td>
</tr>
<tr>
<td>UGT2B7 802T>C</td>
<td>296/556 (53.2%)</td>
<td>61/188 (32.4%)</td>
<td>2.4</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Table 3. Univariate and multivariate backward logistic regression for the identification of factors associated with early treatment discontinuation of efavirenz.

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Univariate</th>
<th></th>
<th>Multivariate</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratio (95% CI)</td>
<td>P value</td>
<td>Odds ratio (95% CI)</td>
<td>P value</td>
</tr>
<tr>
<td>Gender (Female)</td>
<td>0.92 (0.55 to 1.56)</td>
<td>0.77</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethnicity (Black)</td>
<td>0.47 (0.27 to 0.80)</td>
<td>0.05</td>
<td>0.27 (0.14 to 0.50)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Age</td>
<td>1 (0.99 to 1)</td>
<td>0.25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>0.99 (0.97 to 1.01)</td>
<td>0.57</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.99 (0.98 to 1.01)</td>
<td>0.58</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Smoking</td>
<td>0.61 (0.39 to 0.94)</td>
<td>0.03</td>
<td>0.45 (0.28 to 0.74)</td>
<td>0.002</td>
</tr>
<tr>
<td>CYP2B6 516TT</td>
<td>2.56 (1.25 to 5.2)</td>
<td>0.01</td>
<td>2.81 (1.34 to 5.90)</td>
<td>0.006</td>
</tr>
<tr>
<td>CYP2B6 983 C carrier</td>
<td>0.25 (0.031 to 2.12)</td>
<td>0.21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CAR rs2307424CC</td>
<td>1.49 (0.96 to 2.3)</td>
<td>0.07</td>
<td>1.92 (1.20 to 3.07)</td>
<td>0.007</td>
</tr>
<tr>
<td>PXR 63396 C carrier</td>
<td>0.66 (0.43 to 1.04)</td>
<td>0.07</td>
<td>n.d.*</td>
<td>0.112</td>
</tr>
<tr>
<td>CYP2A6*9B carrier</td>
<td>1.4 (0.75 to 2.65)</td>
<td>0.29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UGT2B7 735 G carrier</td>
<td>0.75 (0.45 to 1.25)</td>
<td>0.28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UGT2B7 802 C carrier</td>
<td>1.53 (0.93 to 2.5)</td>
<td>0.09</td>
<td>n.d.*</td>
<td>0.22</td>
</tr>
</tbody>
</table>

*n.d = not done; Rows with significant p value (p < 0.05) in the multivariate analysis are expressed in bold.

Constant of the final multivariate model = 0.74 p = 0.21
Measure of goodness of fit was conducted using Hosmer and Lomeshow test: \(\chi^2 = 4.8 \ p = 0.56. \)
Figure 1

Barchart to represent % of patients discontinuing treatment within 3 months and number of discontinuation-associated alleles (CYP2B6 516T and CAR rs2307424C, A) and number of discontinuation-associated risk factors (CYP2B6 516T and CAR rs2307424C, white ethnicity, and smoking; B).