UZH-Logo

Maintenance Infos

Topographical aspects in the dynamics of sleep homeostasis in young men: individual patterns


Rusterholz, T; Achermann, P (2011). Topographical aspects in the dynamics of sleep homeostasis in young men: individual patterns. BMC Neuroscience, 12:84.

Abstract

BACKGROUND:

Sleep homeostasis refers to the increase of sleep pressure during waking and the decrease of sleep intensity during sleep. Electroencephalography (EEG) slow-wave activity (SWA; EEG power in the 0.75-4.5 Hz range) is a marker of non-rapid eye movement (NREM) sleep intensity and can be used to model sleep homeostasis (Process S). SWA shows a frontal predominance, and its increase after sleep deprivation is most pronounced in frontal areas. The question arises whether the dynamics of the homeostatic Process S also show regional specificity. Furthermore, the spatial distribution of SWA is characteristic for an individual and may reflect traits of functional anatomy. The aim of the current study was to quantify inter-individual variation in the parameters of Process S and investigate their spatial distribution. Polysomnographic recordings obtained with 27 EEG derivations of a baseline night of sleep and a recovery night of sleep after 40 h of sustained wakefulness were analyzed. Eight healthy young subjects participated in this study. Process S was modeled by a saturating exponential function during wakefulness and an exponential decline during sleep. Empirical mean SWA per NREM sleep episode at episode midpoint served for parameter estimation at each derivation. Time constants were restricted to a physiologically meaningful range.
RESULTS:

For both, the buildup and decline of Process S, significant topographic differences were observed: The decline and buildup of Process S were slowest in fronto-central areas while the fastest dynamics were observed in parieto-occipital (decrease) and frontal (buildup) areas. Each individual showed distinct spatial patterns in the parameters of Process S and the parameters differed significantly between individuals.
CONCLUSIONS:

For the first time, topographical aspects of the buildup of Process S were quantified. Our data provide an additional indication of regional differences in sleep homeostasis and support the notion of local aspects of sleep regulation.

BACKGROUND:

Sleep homeostasis refers to the increase of sleep pressure during waking and the decrease of sleep intensity during sleep. Electroencephalography (EEG) slow-wave activity (SWA; EEG power in the 0.75-4.5 Hz range) is a marker of non-rapid eye movement (NREM) sleep intensity and can be used to model sleep homeostasis (Process S). SWA shows a frontal predominance, and its increase after sleep deprivation is most pronounced in frontal areas. The question arises whether the dynamics of the homeostatic Process S also show regional specificity. Furthermore, the spatial distribution of SWA is characteristic for an individual and may reflect traits of functional anatomy. The aim of the current study was to quantify inter-individual variation in the parameters of Process S and investigate their spatial distribution. Polysomnographic recordings obtained with 27 EEG derivations of a baseline night of sleep and a recovery night of sleep after 40 h of sustained wakefulness were analyzed. Eight healthy young subjects participated in this study. Process S was modeled by a saturating exponential function during wakefulness and an exponential decline during sleep. Empirical mean SWA per NREM sleep episode at episode midpoint served for parameter estimation at each derivation. Time constants were restricted to a physiologically meaningful range.
RESULTS:

For both, the buildup and decline of Process S, significant topographic differences were observed: The decline and buildup of Process S were slowest in fronto-central areas while the fastest dynamics were observed in parieto-occipital (decrease) and frontal (buildup) areas. Each individual showed distinct spatial patterns in the parameters of Process S and the parameters differed significantly between individuals.
CONCLUSIONS:

For the first time, topographical aspects of the buildup of Process S were quantified. Our data provide an additional indication of regional differences in sleep homeostasis and support the notion of local aspects of sleep regulation.

Citations

5 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

43 downloads since deposited on 29 Jan 2012
27 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:29 Jan 2012 09:35
Last Modified:05 Apr 2016 15:26
Publisher:BioMed Central
ISSN:1471-2202
Publisher DOI:https://doi.org/10.1186/1471-2202-12-84
PubMed ID:21846365
Permanent URL: https://doi.org/10.5167/uzh-56220

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 906kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations