UZH-Logo

14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif


Andersen, S D; Keijzers, G; Rampakakis, E; Engels, K; Luhn, P; El-Shemerly, M; Nielsen, F C; Du, Y; May, A; Bohr, V A; Ferrari, S; Zannis-Hadjopoulos, M; Fu, H; Rasmussen, L J (2012). 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif. DNA Repair, 11(3):267-277.

Abstract

Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins are regulatory phosphorserine/threonine binding proteins involved in the control of diverse cellular events, including cell cycle checkpoint and apoptosis signaling. hEXO1 is regulated by post-translation Ser/Thr phosphorylation in a yet not fully clarified manner, but evidently three phosphorylation sites are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding experiments reveal weak affinity of the more selective isoform 14-3-3σ but both 14-3-3 isoforms η and σ significantly stimulate hEXO1 activity, indicating that these regulatory proteins exert a common regulation mode on hEXO1. Results demonstrate that binding involves the phosphorable amino acid S746 in hEXO1 and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate with PCNA in distinct replication foci and respond to DNA double strand breaks (DSBs), indicating that 14-3-3 binding does not involve regulating the subcellular distribution of hEXO1. Altogether, these results suggest that association may be related to regulation of hEXO1 availability during the DNA damage response to plausibly prevent extensive DNA resection at the damage site, as supported by recent studies.

Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins are regulatory phosphorserine/threonine binding proteins involved in the control of diverse cellular events, including cell cycle checkpoint and apoptosis signaling. hEXO1 is regulated by post-translation Ser/Thr phosphorylation in a yet not fully clarified manner, but evidently three phosphorylation sites are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding experiments reveal weak affinity of the more selective isoform 14-3-3σ but both 14-3-3 isoforms η and σ significantly stimulate hEXO1 activity, indicating that these regulatory proteins exert a common regulation mode on hEXO1. Results demonstrate that binding involves the phosphorable amino acid S746 in hEXO1 and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate with PCNA in distinct replication foci and respond to DNA double strand breaks (DSBs), indicating that 14-3-3 binding does not involve regulating the subcellular distribution of hEXO1. Altogether, these results suggest that association may be related to regulation of hEXO1 availability during the DNA damage response to plausibly prevent extensive DNA resection at the damage site, as supported by recent studies.

Citations

8 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 30 Mar 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:30 Mar 2012 07:33
Last Modified:05 Apr 2016 15:26
Publisher:Elsevier
ISSN:1568-7856
Publisher DOI:10.1016/j.dnarep.2011.11.007
PubMed ID:22222486
Permanent URL: http://doi.org/10.5167/uzh-56246

Download

[img]Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations