UZH-Logo

Maintenance Infos

Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior


Ringli, M; Huber, R (2011). Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior. Progress in Brain Research, 193:63-82.

Abstract

Sleep slow waves are the major electrophysiological features of non-rapid eye movement (NREM) sleep. Although there is growing understanding of where slow waves originate and how they are generated during sleep, the function of slow waves is still largely unclear. A recently proposed hypothesis relates slow waves to the homeostatic regulation of synaptic plasticity. While several studies confirm a correlation between experimentally triggered synaptic changes and slow-wave activity (SWA), little is known about its association to synaptic changes occurring during cortical maturation. Interestingly, slow waves undergo remarkable changes during development that parallel the time course of cortical maturation. In a recent cross-sectional study including children and adolescents, the topographical distribution of SWA was analyzed with high-density electroencephalography. The results showed age-dependent differences in SWA topography: SWA was highest over posterior regions during early childhood and then shifted over central derivations to the frontal cortex in late adolescence. This trajectory of SWA topography matches the course of cortical gray maturation. In this chapter, the major changes in slow waves during development are highlighted and linked to cortical maturation and behavior. Interestingly, synaptic density and slow-wave amplitude increase during childhood are highest shortly before puberty, decline thereafter during adolescence, reaching overall stable levels during adulthood. The question arises whether SWA is merely reflecting cortical changes or if it plays an active role in brain maturation. We thereby propose a model, by which sleep slow waves may contribute to cortical maturation. We hypothesize that while there is a balance between synaptic strengthening and synaptic downscaling in adults, the balance of strengthening/formation and weakening/elimination is tilted during development.

Sleep slow waves are the major electrophysiological features of non-rapid eye movement (NREM) sleep. Although there is growing understanding of where slow waves originate and how they are generated during sleep, the function of slow waves is still largely unclear. A recently proposed hypothesis relates slow waves to the homeostatic regulation of synaptic plasticity. While several studies confirm a correlation between experimentally triggered synaptic changes and slow-wave activity (SWA), little is known about its association to synaptic changes occurring during cortical maturation. Interestingly, slow waves undergo remarkable changes during development that parallel the time course of cortical maturation. In a recent cross-sectional study including children and adolescents, the topographical distribution of SWA was analyzed with high-density electroencephalography. The results showed age-dependent differences in SWA topography: SWA was highest over posterior regions during early childhood and then shifted over central derivations to the frontal cortex in late adolescence. This trajectory of SWA topography matches the course of cortical gray maturation. In this chapter, the major changes in slow waves during development are highlighted and linked to cortical maturation and behavior. Interestingly, synaptic density and slow-wave amplitude increase during childhood are highest shortly before puberty, decline thereafter during adolescence, reaching overall stable levels during adulthood. The question arises whether SWA is merely reflecting cortical changes or if it plays an active role in brain maturation. We thereby propose a model, by which sleep slow waves may contribute to cortical maturation. We hypothesize that while there is a balance between synaptic strengthening and synaptic downscaling in adults, the balance of strengthening/formation and weakening/elimination is tilted during development.

Citations

33 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:29 Jan 2012 09:21
Last Modified:05 Apr 2016 15:27
Publisher:Elsevier
ISSN:0079-6123
Publisher DOI:https://doi.org/10.1016/B978-0-444-53839-0.00005-3
PubMed ID:21854956

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations