UZH-Logo

Maintenance Infos

Analysis and correction of background velocity offsets in phase-contrast flow measurements using magnetic field monitoring


Giese, D; Haeberlin, M; Barmet, C; Pruessmann, K P; Schaeffter, T; Kozerke, S (2012). Analysis and correction of background velocity offsets in phase-contrast flow measurements using magnetic field monitoring. Magnetic Resonance in Medicine, 67(5):1294-1302.

Abstract

The value of phase-contrast magnetic resonance imaging for quantifying tissue motion and blood flow has been long recognized. However, the sensitivity of the method to system imperfections can lead to inaccuracies limiting its clinical acceptance. A key source of error relates to eddy current-induced phase fluctuations, which can offset the measured object velocity significantly. A higher-order dynamic field camera was used to study the spatiotemporal evolution of background phases in cine phase-contrast measurements. It is demonstrated that eddy current-induced offsets in phase-difference data are present up to the second spatial order. Oscillatory temporal behaviors of offsets in the kHz range suggest mechanical resonances of the MR system to be non-negligible in phase-contrast imaging. By careful selection of the echo time, their impact can be significantly reduced. When applying field monitoring data for correcting eddy current and mechanically induced velocity offsets, errors decrease to less than 0.5% of the maximum velocity for various sequence settings proving the robustness of the correction approach. In vivo feasibility is demonstrated for aortic and pulmonary flow measurements in five healthy subjects. Using field monitoring data, mean error in stroke volume was reduced from 10% to below 3%. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc.

Abstract

The value of phase-contrast magnetic resonance imaging for quantifying tissue motion and blood flow has been long recognized. However, the sensitivity of the method to system imperfections can lead to inaccuracies limiting its clinical acceptance. A key source of error relates to eddy current-induced phase fluctuations, which can offset the measured object velocity significantly. A higher-order dynamic field camera was used to study the spatiotemporal evolution of background phases in cine phase-contrast measurements. It is demonstrated that eddy current-induced offsets in phase-difference data are present up to the second spatial order. Oscillatory temporal behaviors of offsets in the kHz range suggest mechanical resonances of the MR system to be non-negligible in phase-contrast imaging. By careful selection of the echo time, their impact can be significantly reduced. When applying field monitoring data for correcting eddy current and mechanically induced velocity offsets, errors decrease to less than 0.5% of the maximum velocity for various sequence settings proving the robustness of the correction approach. In vivo feasibility is demonstrated for aortic and pulmonary flow measurements in five healthy subjects. Using field monitoring data, mean error in stroke volume was reduced from 10% to below 3%. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc.

Citations

19 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 22 Jan 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2012
Deposited On:22 Jan 2012 20:24
Last Modified:05 Apr 2016 15:27
Publisher:Wiley-Blackwell
ISSN:0740-3194
Publisher DOI:https://doi.org/10.1002/mrm.23111
PubMed ID:21826731

Download

[img]
Content: Published Version
Filetype: PDF (Article in press) - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations