UZH-Logo

Respiratory bellows revisited for motion compensation: preliminary experience for cardiovascular MR


Santelli, C; Nezafat, R; Goddu, B; Manning, W J; Smink, J; Kozerke, S; Peters, D C (2011). Respiratory bellows revisited for motion compensation: preliminary experience for cardiovascular MR. Magnetic Resonance in Medicine, 65(4):1097-1102.

Abstract

For many cardiac MR applications, respiratory bellows gating is attractive because it is widely available and not disruptive to or dependent on imaging. However, its use is uncommon in cardiac MR, because its accuracy has not been fully studied. Here, in 10 healthy subjects, the bellows and respiratory navigator (NAV) with the displacement of the diaphragm and heart were simultaneously monitored, during single-shot imaging. Furthermore, bellows-gated and NAV-gated coronary MRI were compared using a retrospective reconstruction at identical efficiency. There was a strong linear relationship for both the NAV and the abdominal bellows with the diaphragm (R = 0.90 ± 0.05 bellows, R = 0.98 ± 0.01 NAV, P < 0.001) and the heart (R = 0.89 ± 0.06 bellows, R = 0.96 ± 0.02 NAV, P = 0.004); thoracic bellows correlated less strongly. The image quality of bellows-gated coronary MRI was similar to NAV-gated and superior to no-gating (P < 0.01). In conclusion, bellows provides a respiratory monitor which is highly correlated with the NAV and suitable for respiratory compensation in selected cardiac MR applications.

For many cardiac MR applications, respiratory bellows gating is attractive because it is widely available and not disruptive to or dependent on imaging. However, its use is uncommon in cardiac MR, because its accuracy has not been fully studied. Here, in 10 healthy subjects, the bellows and respiratory navigator (NAV) with the displacement of the diaphragm and heart were simultaneously monitored, during single-shot imaging. Furthermore, bellows-gated and NAV-gated coronary MRI were compared using a retrospective reconstruction at identical efficiency. There was a strong linear relationship for both the NAV and the abdominal bellows with the diaphragm (R = 0.90 ± 0.05 bellows, R = 0.98 ± 0.01 NAV, P < 0.001) and the heart (R = 0.89 ± 0.06 bellows, R = 0.96 ± 0.02 NAV, P = 0.004); thoracic bellows correlated less strongly. The image quality of bellows-gated coronary MRI was similar to NAV-gated and superior to no-gating (P < 0.01). In conclusion, bellows provides a respiratory monitor which is highly correlated with the NAV and suitable for respiratory compensation in selected cardiac MR applications.

Citations

17 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 22 Jan 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2011
Deposited On:22 Jan 2012 20:31
Last Modified:05 Apr 2016 15:27
Publisher:Wiley-Blackwell
ISSN:0740-3194
Publisher DOI:10.1002/mrm.22687
PubMed ID:21413074
Permanent URL: http://doi.org/10.5167/uzh-56474

Download

[img]Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations