UZH-Logo

Maintenance Infos

Latent membrane protein 2B regulates susceptibility to induction of lytic Epstein-Barr virus infection


Rechsteiner, M P; Berger, C; Zauner, L; Sigrist, J A; Weber, M; Longnecker, R; Bernasconi, M; Nadal, D (2008). Latent membrane protein 2B regulates susceptibility to induction of lytic Epstein-Barr virus infection. Journal of Virology, 82(4):1739-1747.

Abstract

The B-lymphotropic Epstein-Barr virus (EBV) encodes two isoforms of latent membrane protein 2 (LMP2), LMP2A and LMP2B, which are expressed during latency in B cells. The function of LMP2B is largely unknown, whereas LMP2A blocks B-cell receptor (BCR) signaling transduction and induction of lytic EBV infection, thereby promoting B-cell survival. Transfection experiments on LMP2B in EBV-negative B cells and the silencing of LMP2B in EBV-harboring Burkitt's lymphoma-derived Akata cells suggest that LMP2B interferes with the function of LMP2A, but the role of LMP2B in the presence of functional EBV has not been established. Here, LMP2B, LMP2A, or both were overexpressed in EBV-harboring Akata cells to study the function of LMP2B. The overexpression of LMP2B increased the magnitude of EBV switching from its latent to its lytic form upon BCR cross-linking, as indicated by a more-enhanced upregulation and expression of EBV lytic genes and significantly increased production of transforming EBV compared to Akata vector control cells or LMP2A-overexpressing cells. Moreover, LMP2B lowered the degree of BCR cross-linking required to induce lytic EBV infection. Finally, LMP2B colocalized with LMP2A as demonstrated by immunoprecipitation and immunofluorescence and restored calcium mobilization upon BCR cross-linking, a signaling process inhibited by LMP2A. Thus, our findings suggest that LMP2B negatively regulates the function of LMP2A in preventing the switch from latent to lytic EBV replication.

The B-lymphotropic Epstein-Barr virus (EBV) encodes two isoforms of latent membrane protein 2 (LMP2), LMP2A and LMP2B, which are expressed during latency in B cells. The function of LMP2B is largely unknown, whereas LMP2A blocks B-cell receptor (BCR) signaling transduction and induction of lytic EBV infection, thereby promoting B-cell survival. Transfection experiments on LMP2B in EBV-negative B cells and the silencing of LMP2B in EBV-harboring Burkitt's lymphoma-derived Akata cells suggest that LMP2B interferes with the function of LMP2A, but the role of LMP2B in the presence of functional EBV has not been established. Here, LMP2B, LMP2A, or both were overexpressed in EBV-harboring Akata cells to study the function of LMP2B. The overexpression of LMP2B increased the magnitude of EBV switching from its latent to its lytic form upon BCR cross-linking, as indicated by a more-enhanced upregulation and expression of EBV lytic genes and significantly increased production of transforming EBV compared to Akata vector control cells or LMP2A-overexpressing cells. Moreover, LMP2B lowered the degree of BCR cross-linking required to induce lytic EBV infection. Finally, LMP2B colocalized with LMP2A as demonstrated by immunoprecipitation and immunofluorescence and restored calcium mobilization upon BCR cross-linking, a signaling process inhibited by LMP2A. Thus, our findings suggest that LMP2B negatively regulates the function of LMP2A in preventing the switch from latent to lytic EBV replication.

Citations

17 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

89 downloads since deposited on 05 Feb 2009
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2008
Deposited On:05 Feb 2009 15:50
Last Modified:05 Apr 2016 12:34
Publisher:American Society for Microbiology
ISSN:0022-538X
Additional Information:Copyright: American Society for Microbiology
Publisher DOI:10.1128/JVI.01723-07
PubMed ID:18057232
Permanent URL: http://doi.org/10.5167/uzh-5681

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations