UZH-Logo

Maintenance Infos

Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies


Hornung, R; Spichtig, S; Baños, A; Stahel, M; Zimmermann, R; Wolf, M (2011). Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies. Lasers in Medical Science, 26(2):205-212.

Abstract

Preterm labor is a common obstetric complication. Clinical evaluation of cervical ripening to predict preterm labor is very inaccurate. We used frequency-domain near-infrared spectroscopy (FD-NIRS) to non-invasively investigate the changes of the optical properties (i.e., absorption and scattering of light) in the uterine cervix during regular pregnancies. Optical properties of uterine cervices were measured in 13 patients at various time points of regular pregnancies. For each gestational trimester, mean values with 95% confidence intervals were calculated for oxy-, deoxy-, and total hemoglobin concentration (O(2)Hb, HHb, tHb), tissue oxygen saturation and water content and statistically significant differences between the trimesters were determined. The wavelength-dependent scattering (scatter power) was calculated by an exponential fit. O(2)Hb, and tHb and the scatter power showed an increase as a function of the gestational age. Differences between the second and the third trimester were statistically significant. HHb and the water content showed no significant change over time. Our results show that FD-NIRS is a promising diagnostic tool for providing information about cervical content of hemoglobin, water, and extracellular matrix proteins. We propose this technology to assess the cervical ripening and eventually to predict preterm labor.

Preterm labor is a common obstetric complication. Clinical evaluation of cervical ripening to predict preterm labor is very inaccurate. We used frequency-domain near-infrared spectroscopy (FD-NIRS) to non-invasively investigate the changes of the optical properties (i.e., absorption and scattering of light) in the uterine cervix during regular pregnancies. Optical properties of uterine cervices were measured in 13 patients at various time points of regular pregnancies. For each gestational trimester, mean values with 95% confidence intervals were calculated for oxy-, deoxy-, and total hemoglobin concentration (O(2)Hb, HHb, tHb), tissue oxygen saturation and water content and statistically significant differences between the trimesters were determined. The wavelength-dependent scattering (scatter power) was calculated by an exponential fit. O(2)Hb, and tHb and the scatter power showed an increase as a function of the gestational age. Differences between the second and the third trimester were statistically significant. HHb and the water content showed no significant change over time. Our results show that FD-NIRS is a promising diagnostic tool for providing information about cervical content of hemoglobin, water, and extracellular matrix proteins. We propose this technology to assess the cervical ripening and eventually to predict preterm labor.

Citations

7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Obstetrics
04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:01 Feb 2012 21:36
Last Modified:05 Apr 2016 15:28
Publisher:Springer
ISSN:0268-8921
Publisher DOI:10.1007/s10103-010-0832-7
PubMed ID:20814712

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations