UZH-Logo

Maintenance Infos

Birth cohort effects in neurological diseases: amyotrophic lateral sclerosis, Parkinson's disease and multiple sclerosis


Ajdacic-Gross, Vladeta; Schmid, Margrit; Tschopp, Alois; Gutzwiller, Felix (2012). Birth cohort effects in neurological diseases: amyotrophic lateral sclerosis, Parkinson's disease and multiple sclerosis. Neuroepidemiology, 38(1):56-63.

Abstract

Background: Generational differences in disease rates are the main subject of age-period-cohort (APC) analysis, which is mostly applied in cancer and suicide research. This study applied APC analysis to selected neurological diseases: amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and multiple sclerosis (MS). Methods: The analyses were based on Swiss mortality data. Age-stratified data has been available for MS, PD and ALS since 1901, 1921, and 1942, respectively. APC analysis was performed within the framework of logit models. Main effect models were extended by implementing nested effects, i.e. age effects nested in subperiods, in order to account for the fact that age profiles may change for reasons other than generational influences. Results: In preliminary analyses, APC analysis yielded noteworthy birth cohort effects in all three diseases. After implementing nested effects, the birth cohort effects disappeared in ALS, and smoothed out in PD, where they were greater for the generations born before the 1920s. In MS, the birth cohort effects remained stable, and exhibited a peak in cohorts born in the 1910s and 1920s. Conclusions: APC analysis yielded some evidence for birth cohort effects, i.e. predisposing risk factors that may change in historical terms, in MS and PD, but probably not in ALS.

Background: Generational differences in disease rates are the main subject of age-period-cohort (APC) analysis, which is mostly applied in cancer and suicide research. This study applied APC analysis to selected neurological diseases: amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and multiple sclerosis (MS). Methods: The analyses were based on Swiss mortality data. Age-stratified data has been available for MS, PD and ALS since 1901, 1921, and 1942, respectively. APC analysis was performed within the framework of logit models. Main effect models were extended by implementing nested effects, i.e. age effects nested in subperiods, in order to account for the fact that age profiles may change for reasons other than generational influences. Results: In preliminary analyses, APC analysis yielded noteworthy birth cohort effects in all three diseases. After implementing nested effects, the birth cohort effects disappeared in ALS, and smoothed out in PD, where they were greater for the generations born before the 1920s. In MS, the birth cohort effects remained stable, and exhibited a peak in cohorts born in the 1910s and 1920s. Conclusions: APC analysis yielded some evidence for birth cohort effects, i.e. predisposing risk factors that may change in historical terms, in MS and PD, but probably not in ALS.

Citations

6 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

17 downloads since deposited on 02 Apr 2012
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Clinical and Social Psychiatry Zurich West (former)
04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:02 Apr 2012 07:40
Last Modified:13 Jun 2016 07:48
Publisher:Karger
ISSN:0251-5350
Publisher DOI:https://doi.org/10.1159/000334632
PubMed ID:22236983
Permanent URL: https://doi.org/10.5167/uzh-57148

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 370kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations