UZH-Logo

Maintenance Infos

Ankle paresis in incomplete spinal cord injury: relation to corticospinal conductivity and ambulatory capacity


Wirth, B; van Hedel, H J A; Curt, A (2008). Ankle paresis in incomplete spinal cord injury: relation to corticospinal conductivity and ambulatory capacity. Journal of Clinical Neurophysiology, 25(4):210-217.

Abstract

There is limited data on the relation of corticospinal tract conductivity to clinical measures in incomplete spinal cord injury. This study examined the relationship of muscle strength to corticospinal tract input assessed by motor evoked potentials (MEPs) during static and dynamic conditions and to gait. Dorsiflexor strength was established by manual muscle test, maximal voluntary contraction, and maximal movement velocity, the latter being acquired during auditory-paced ankle movements. MEPs were elicited during isometric contractions with constant or continuously increasing ankle joint torque. Gait was assessed by quantifying its speed and independence. Linear regression analyses showed that maximal movement velocity was related to the MEP latencies and amplitudes in the dynamic condition (R(2)(adj.) = 0.62) and to the MEP latencies in the static condition (R(2)(adj.) = 0.45). Maximal voluntary contraction was only related to the MEP latencies in the static (R(2)(adj.) = 0.45) and the dynamic condition (R(2)(adj.) = 0.21), whereas manual muscle test did not show any relationship to the MEPs. In incomplete spinal cord injury patients, the dynamic measure maximal movement velocity might be a useful clinical assessment of corticospinal tract function. Clinical studies on recovery and repair of corticospinal tract function in spinal lesions could substantially benefit from implementing dynamic measures in the clinical assessment protocol.

There is limited data on the relation of corticospinal tract conductivity to clinical measures in incomplete spinal cord injury. This study examined the relationship of muscle strength to corticospinal tract input assessed by motor evoked potentials (MEPs) during static and dynamic conditions and to gait. Dorsiflexor strength was established by manual muscle test, maximal voluntary contraction, and maximal movement velocity, the latter being acquired during auditory-paced ankle movements. MEPs were elicited during isometric contractions with constant or continuously increasing ankle joint torque. Gait was assessed by quantifying its speed and independence. Linear regression analyses showed that maximal movement velocity was related to the MEP latencies and amplitudes in the dynamic condition (R(2)(adj.) = 0.62) and to the MEP latencies in the static condition (R(2)(adj.) = 0.45). Maximal voluntary contraction was only related to the MEP latencies in the static (R(2)(adj.) = 0.45) and the dynamic condition (R(2)(adj.) = 0.21), whereas manual muscle test did not show any relationship to the MEPs. In incomplete spinal cord injury patients, the dynamic measure maximal movement velocity might be a useful clinical assessment of corticospinal tract function. Clinical studies on recovery and repair of corticospinal tract function in spinal lesions could substantially benefit from implementing dynamic measures in the clinical assessment protocol.

Citations

8 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:August 2008
Deposited On:20 Nov 2008 12:12
Last Modified:05 Apr 2016 12:34
Publisher:Lippincott Wiliams & Wilkins
ISSN:0736-0258
Publisher DOI:10.1097/WNP.0b013e318183f4e3
PubMed ID:18677185

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations