UZH-Logo

Maintenance Infos

Ankle dexterity remains intact in patients with incomplete spinal cord injury in contrast to stroke patients


Wirth, B; van Hedel, H J A; Curt, A (2008). Ankle dexterity remains intact in patients with incomplete spinal cord injury in contrast to stroke patients. Experimental Brain Research, 191(3):353-361.

Abstract

Patients with either incomplete spinal cord injury (iSCI) or stroke suffer from muscle weakness in the lower limb and impaired ambulation. The assessment of motor function in iSCI has so far focused on measures of muscle strength, while in stroke extensive research has been directed towards upper limb motor control. Slowness of movements was reported to be a common motor impairment of patients with lesions of the central nervous system (CNS). It may result from muscle weakness and deficits in dexterity, which is two aspects of motor control that are dependent on cortico-spinal tract (CST) integrity and are crucial to ambulation. Thus, this study investigated the impact of CST damage either at spinal (iSCI) or cortical level (stroke) on ankle dexterity and maximal movement velocity (MMV). Twelve iSCI, stroke and control subjects were tested. The patients were matched for gender, age and maximal voluntary contraction (MVC) in ankle dorsi- and plantar-flexion muscles. Dexterity and MMV were tested in the supine position. CST function was assessed by motor evoked potentials (MEPs). In both groups of patients, MMV and MEP latencies were comparably deteriorated. However, dexterity was preserved in iSCI, but impaired in the hemiparetic stroke leg. Therefore, iSCI patients showed a high dexterity within the preserved muscle strength, but suffered primarily from reduced MMV. In stroke patients, both dexterity and MMV were reduced. These differences might be considered in rehabilitation programs and regeneration therapies.

Patients with either incomplete spinal cord injury (iSCI) or stroke suffer from muscle weakness in the lower limb and impaired ambulation. The assessment of motor function in iSCI has so far focused on measures of muscle strength, while in stroke extensive research has been directed towards upper limb motor control. Slowness of movements was reported to be a common motor impairment of patients with lesions of the central nervous system (CNS). It may result from muscle weakness and deficits in dexterity, which is two aspects of motor control that are dependent on cortico-spinal tract (CST) integrity and are crucial to ambulation. Thus, this study investigated the impact of CST damage either at spinal (iSCI) or cortical level (stroke) on ankle dexterity and maximal movement velocity (MMV). Twelve iSCI, stroke and control subjects were tested. The patients were matched for gender, age and maximal voluntary contraction (MVC) in ankle dorsi- and plantar-flexion muscles. Dexterity and MMV were tested in the supine position. CST function was assessed by motor evoked potentials (MEPs). In both groups of patients, MMV and MEP latencies were comparably deteriorated. However, dexterity was preserved in iSCI, but impaired in the hemiparetic stroke leg. Therefore, iSCI patients showed a high dexterity within the preserved muscle strength, but suffered primarily from reduced MMV. In stroke patients, both dexterity and MMV were reduced. These differences might be considered in rehabilitation programs and regeneration therapies.

Citations

8 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:November 2008
Deposited On:20 Nov 2008 09:50
Last Modified:05 Apr 2016 12:34
Publisher:Springer
ISSN:0014-4819
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1007/s00221-008-1528-0
PubMed ID:18704382

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations