UZH-Logo

Maintenance Infos

Chlamydophila pneumoniae HflX belongs to an uncharacterized family of conserved GTPases and associates with the Escherichia coli 50S large ribosomal subunit.


Polkinghorne, A; Ziegler, U; González-Hernández, Y; Pospischil, A; Timms, P; Vaughan, L (2008). Chlamydophila pneumoniae HflX belongs to an uncharacterized family of conserved GTPases and associates with the Escherichia coli 50S large ribosomal subunit. Microbiology, 154( 11):3537-3546.

Abstract

Predicted members of the HflX subfamily of phosphate-binding-loop guanosine triphosphatases (GTPases) are widely distributed in the bacterial kingdom but remain virtually uncharacterized. In an attempt to understand mechanisms used for regulation of growth and development in the chlamydiae, obligate intracellular and developmentally complex bacteria, we have begun investigations into chlamydial GTPases; we report here what appears to be the first analysis of a HflX family GTPase using a predicted homologue from Chlamydophila pneumoniae. In agreement with phylogenetic predictions for members of this GTPase family, purified recombinant Cp. pneumoniae HflX was specific for guanine nucleotides and exhibited a slow intrinsic GTPase activity when incubated with [gamma-(32)P]GTP. Using HflX-specific monoclonal antibodies, HflX could be detected by Western blotting and high-resolution confocal microscopy throughout the vegetative growth cycle of Cp. pneumoniae and, at early time points, appeared to partly localize to the membrane. Ectopic expression of Cp. pneumoniae HflX in Escherichia coli revealed co-sedimentation of HflX with the E. coli 50S large ribosomal subunit. The results of this work open up some intriguing possibilities for the role of GTPases belonging to this previously uncharacterized family of bacterial GTPases. Ribosome association is a feature shared by other important conserved GTPase families and more detailed investigations will be required to delineate the role of HflX in bacterial ribosome function.

Predicted members of the HflX subfamily of phosphate-binding-loop guanosine triphosphatases (GTPases) are widely distributed in the bacterial kingdom but remain virtually uncharacterized. In an attempt to understand mechanisms used for regulation of growth and development in the chlamydiae, obligate intracellular and developmentally complex bacteria, we have begun investigations into chlamydial GTPases; we report here what appears to be the first analysis of a HflX family GTPase using a predicted homologue from Chlamydophila pneumoniae. In agreement with phylogenetic predictions for members of this GTPase family, purified recombinant Cp. pneumoniae HflX was specific for guanine nucleotides and exhibited a slow intrinsic GTPase activity when incubated with [gamma-(32)P]GTP. Using HflX-specific monoclonal antibodies, HflX could be detected by Western blotting and high-resolution confocal microscopy throughout the vegetative growth cycle of Cp. pneumoniae and, at early time points, appeared to partly localize to the membrane. Ectopic expression of Cp. pneumoniae HflX in Escherichia coli revealed co-sedimentation of HflX with the E. coli 50S large ribosomal subunit. The results of this work open up some intriguing possibilities for the role of GTPases belonging to this previously uncharacterized family of bacterial GTPases. Ribosome association is a feature shared by other important conserved GTPase families and more detailed investigations will be required to delineate the role of HflX in bacterial ribosome function.

Citations

19 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

148 downloads since deposited on 25 Nov 2008
25 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Microscopy and Image Analysis
05 Vetsuisse Faculty > Institute of Veterinary Pathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:November 2008
Deposited On:25 Nov 2008 06:56
Last Modified:05 Apr 2016 12:34
Publisher:Society for General Microbiology
ISSN:1350-0872
Additional Information:This is an author manuscript that has been accepted for publication in Journal of General Virology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in Journal of General Virology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of ‘Fair Use of Copyrighted Materials’ (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://vir.sgmjournals.org, and is freely available without a subscription.
Publisher DOI:10.1099/mic.0.2008/022137-0
PubMed ID:18957606
Permanent URL: http://doi.org/10.5167/uzh-5743

Download

[img]
Preview
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations