UZH-Logo

Consistent phenological shifts in the making of a biodiversity hotspot: the Cape flora


Warren, B H; Bakker, F T; Bellstedt, D U; Bytebier, B; Classen-Bockhoff, R; Dreyer, L L; Edwards, D; Forest, F; Galley, C; Hardy, C R; Linder, H P; Muasya, A M; Mummenhoff, K; Oberlander, K C; Quint, M; Richardson, J E; Savolainen, V; Schrire, B D; Van der Niet, T; Verboom, G A; Yesson, C; Hawkins, J A (2011). Consistent phenological shifts in the making of a biodiversity hotspot: the Cape flora. BMC Evolutionary Biology, 11:39.

Abstract

BACKGROUND:

The best documented survival responses of organisms to past climate change on short (glacial-interglacial) timescales are distributional shifts. Despite ample evidence on such timescales for local adaptations of populations at specific sites, the long-term impacts of such changes on evolutionary significant units in response to past climatic change have been little documented. Here we use phylogenies to reconstruct changes in distribution and flowering ecology of the Cape flora--South Africa's biodiversity hotspot--through a period of past (Neogene and Quaternary) changes in the seasonality of rainfall over a timescale of several million years.
RESULTS:

Forty-three distributional and phenological shifts consistent with past climatic change occur across the flora, and a comparable number of clades underwent adaptive changes in their flowering phenology (9 clades; half of the clades investigated) as underwent distributional shifts (12 clades; two thirds of the clades investigated). Of extant Cape angiosperm species, 14-41% have been contributed by lineages that show distributional shifts consistent with past climate change, yet a similar proportion (14-55%) arose from lineages that shifted flowering phenology.
CONCLUSIONS:

Adaptive changes in ecology at the scale we uncover in the Cape and consistent with past climatic change have not been documented for other floras. Shifts in climate tolerance appear to have been more important in this flora than is currently appreciated, and lineages that underwent such shifts went on to contribute a high proportion of the flora's extant species diversity. That shifts in phenology, on an evolutionary timescale and on such a scale, have not yet been detected for other floras is likely a result of the method used; shifts in flowering phenology cannot be detected in the fossil record.

BACKGROUND:

The best documented survival responses of organisms to past climate change on short (glacial-interglacial) timescales are distributional shifts. Despite ample evidence on such timescales for local adaptations of populations at specific sites, the long-term impacts of such changes on evolutionary significant units in response to past climatic change have been little documented. Here we use phylogenies to reconstruct changes in distribution and flowering ecology of the Cape flora--South Africa's biodiversity hotspot--through a period of past (Neogene and Quaternary) changes in the seasonality of rainfall over a timescale of several million years.
RESULTS:

Forty-three distributional and phenological shifts consistent with past climatic change occur across the flora, and a comparable number of clades underwent adaptive changes in their flowering phenology (9 clades; half of the clades investigated) as underwent distributional shifts (12 clades; two thirds of the clades investigated). Of extant Cape angiosperm species, 14-41% have been contributed by lineages that show distributional shifts consistent with past climate change, yet a similar proportion (14-55%) arose from lineages that shifted flowering phenology.
CONCLUSIONS:

Adaptive changes in ecology at the scale we uncover in the Cape and consistent with past climatic change have not been documented for other floras. Shifts in climate tolerance appear to have been more important in this flora than is currently appreciated, and lineages that underwent such shifts went on to contribute a high proportion of the flora's extant species diversity. That shifts in phenology, on an evolutionary timescale and on such a scale, have not yet been detected for other floras is likely a result of the method used; shifts in flowering phenology cannot be detected in the fossil record.

Citations

6 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

63 downloads since deposited on 29 Jan 2012
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Systematic Botany and Botanical Gardens
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2011
Deposited On:29 Jan 2012 10:20
Last Modified:05 Apr 2016 15:31
Publisher:BioMed Central
ISSN:1471-2148
Publisher DOI:10.1186/1471-2148-11-39
Official URL:http://www.biomedcentral.com/1471-2148/11/39
PubMed ID:21303519
Permanent URL: http://doi.org/10.5167/uzh-57462

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 476kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations