UZH-Logo

Maintenance Infos

Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: a randomized controlled multicenter trial


Wirz, M; Bastiaenen, C; de Bie, R; Dietz, V (2011). Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: a randomized controlled multicenter trial. BMC Neurology, 11:60.

Abstract

BACKGROUND: A large proportion of patients with spinal cord injury (SCI) regain ambulatory function. However, during the first 3 months most of the patients are not able to walk unsupported. To enable ambulatory training at such an early stage the body weight is partially relieved and the leg movements are assisted by two therapists. A more recent approach is the application of robotic based assistance which allows for longer training duration. From motor learning science and studies including patients with stroke, it is known that training effects depend on the duration of the training. Longer trainings result in a better walking function. The aim of the present study is to evaluate if prolonged robot assisted walking training leads to a better walking outcome in patients with incomplete SCI and whether such training is feasible or has undesirable effects. METHODS/DESIGN: Patients from multiple sites with a subacute incomplete SCI and who are not able to walk independently will be randomized to either standard training (3-5 sessions per week, session duration maximum 25 minutes) or an intensive training (3-5 sessions per week, session duration minimum 50 minutes). After 8 weeks of training and 4 months later the walking ability, the occurrence of adverse events and the perceived rate of exertion as well as the patients' impression of change will be compared between groups. TRIAL REGISTRATION: This study is registered at clinicaltrials.gov, identifier: NCT01147185.

BACKGROUND: A large proportion of patients with spinal cord injury (SCI) regain ambulatory function. However, during the first 3 months most of the patients are not able to walk unsupported. To enable ambulatory training at such an early stage the body weight is partially relieved and the leg movements are assisted by two therapists. A more recent approach is the application of robotic based assistance which allows for longer training duration. From motor learning science and studies including patients with stroke, it is known that training effects depend on the duration of the training. Longer trainings result in a better walking function. The aim of the present study is to evaluate if prolonged robot assisted walking training leads to a better walking outcome in patients with incomplete SCI and whether such training is feasible or has undesirable effects. METHODS/DESIGN: Patients from multiple sites with a subacute incomplete SCI and who are not able to walk independently will be randomized to either standard training (3-5 sessions per week, session duration maximum 25 minutes) or an intensive training (3-5 sessions per week, session duration minimum 50 minutes). After 8 weeks of training and 4 months later the walking ability, the occurrence of adverse events and the perceived rate of exertion as well as the patients' impression of change will be compared between groups. TRIAL REGISTRATION: This study is registered at clinicaltrials.gov, identifier: NCT01147185.

Citations

14 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

31 downloads since deposited on 29 Jan 2012
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:29 Jan 2012 10:28
Last Modified:05 Apr 2016 15:31
Publisher:BioMed Central
ISSN:1471-2377
Publisher DOI:https://doi.org/10.1186/1471-2377-11-60
PubMed ID:21619574
Permanent URL: https://doi.org/10.5167/uzh-57493

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations