UZH-Logo

Multidonor Deep-UV FRET study of Protein–Ligand binding and its potential to obtain structure information


Li, Qiang; Seeger, Stefan (2011). Multidonor Deep-UV FRET study of Protein–Ligand binding and its potential to obtain structure information. Journal of Physical Chemistry B, 115(46):13643-13649.

Abstract

Fluorescence resonance energy transfer (FRET) using biotinylated β-galactosidase (βGAL) as donor and Alexa Fluor 350 (AF350) labelled avidin as acceptor has been investigated by means of steady-state fluorescence and time-resolved fluorescence spectroscopy. The donors are readily paired with acceptors through the well-established binding affinity of biotin and avidin. The fluorescence energy transfer efficiency was determined by the donor fluorescence emission and lifetime changes in the presence and absence of acceptor. The theoretical energy transfer efficiency and theoretical average distance between donor and acceptor after non-covalent binding was calculated by taking the distribution of tryptophan residues in βGAL and avidin as well as the location of AF350 in avidin into account, which agree with the experimental data. It is shown how information of the location of acceptor can be obtained. Further, the fluorescence intensity image of AF350 on biotinylated βGAL coated quartz surface through UV FRET has been recorded using deep UV laser-based fluorescence lifetime microscopy. The results demonstrate that (a) deep UV laser-based fluorescence lifetime microscopy is a simple and useful method to study UV FRET of proteins using intrinsic fluorescence, (b) structural information even in complex multi-donor systems can be obtained and (c) FRET signals can be obtained to detect binding events using the native fluorescence of proteins as multi-donor systems.

Fluorescence resonance energy transfer (FRET) using biotinylated β-galactosidase (βGAL) as donor and Alexa Fluor 350 (AF350) labelled avidin as acceptor has been investigated by means of steady-state fluorescence and time-resolved fluorescence spectroscopy. The donors are readily paired with acceptors through the well-established binding affinity of biotin and avidin. The fluorescence energy transfer efficiency was determined by the donor fluorescence emission and lifetime changes in the presence and absence of acceptor. The theoretical energy transfer efficiency and theoretical average distance between donor and acceptor after non-covalent binding was calculated by taking the distribution of tryptophan residues in βGAL and avidin as well as the location of AF350 in avidin into account, which agree with the experimental data. It is shown how information of the location of acceptor can be obtained. Further, the fluorescence intensity image of AF350 on biotinylated βGAL coated quartz surface through UV FRET has been recorded using deep UV laser-based fluorescence lifetime microscopy. The results demonstrate that (a) deep UV laser-based fluorescence lifetime microscopy is a simple and useful method to study UV FRET of proteins using intrinsic fluorescence, (b) structural information even in complex multi-donor systems can be obtained and (c) FRET signals can be obtained to detect binding events using the native fluorescence of proteins as multi-donor systems.

Citations

6 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

76 downloads since deposited on 05 Mar 2012
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2011
Deposited On:05 Mar 2012 07:59
Last Modified:05 Apr 2016 15:31
Publisher:American Chemical Society
ISSN:1520-6106
Additional Information:This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry B, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/jp2035289.
Publisher DOI:10.1021/jp2035289
Permanent URL: http://doi.org/10.5167/uzh-57607

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 790kB
View at publisher
[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 2MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations