UZH-Logo

Maintenance Infos

EEG microstates during resting represent personality differences


Schlegel, Felix; Lehmann, Dietrich; Faber, Pascal L; Milz, Patricia; Gianotti, Lorena R R (2012). EEG microstates during resting represent personality differences. Brain Topography, 25(1):20-26.

Abstract

We investigated the spontaneous brain electric activity of 13 skeptics and 16 believers in paranormal phenomena; they were university students assessed with a self-report scale about paranormal beliefs. 33-channel EEG recordings during no-task resting were processed as sequences of momentary potential distribution maps. Based on the maps at peak times of Global Field Power, the sequences were parsed into segments of quasi-stable potential distribution, the 'microstates'. The microstates were clustered into four classes of map topographies (A-D). Analysis of the microstate parameters time coverage, occurrence frequency and duration as well as the temporal sequence (syntax) of the microstate classes revealed significant differences: Believers had a higher coverage and occurrence of class B, tended to decreased coverage and occurrence of class C, and showed a predominant sequence of microstate concatenations from A to C to B to A that was reversed in skeptics (A to B to C to A). Microstates of different topographies, putative "atoms of thought", are hypothesized to represent different types of information processing.The study demonstrates that personality differences can be detected in resting EEG microstate parameters and microstate syntax. Microstate analysis yielded no conclusive evidence for the hypothesized relation between paranormal belief and schizophrenia.

We investigated the spontaneous brain electric activity of 13 skeptics and 16 believers in paranormal phenomena; they were university students assessed with a self-report scale about paranormal beliefs. 33-channel EEG recordings during no-task resting were processed as sequences of momentary potential distribution maps. Based on the maps at peak times of Global Field Power, the sequences were parsed into segments of quasi-stable potential distribution, the 'microstates'. The microstates were clustered into four classes of map topographies (A-D). Analysis of the microstate parameters time coverage, occurrence frequency and duration as well as the temporal sequence (syntax) of the microstate classes revealed significant differences: Believers had a higher coverage and occurrence of class B, tended to decreased coverage and occurrence of class C, and showed a predominant sequence of microstate concatenations from A to C to B to A that was reversed in skeptics (A to B to C to A). Microstates of different topographies, putative "atoms of thought", are hypothesized to represent different types of information processing.The study demonstrates that personality differences can be detected in resting EEG microstate parameters and microstate syntax. Microstate analysis yielded no conclusive evidence for the hypothesized relation between paranormal belief and schizophrenia.

Citations

13 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

132 downloads since deposited on 03 Apr 2012
25 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
04 Faculty of Medicine > The KEY Institute for Brain-Mind Research
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:Microstate syntax, Cognition, Paranormal beliefs, Schizotypy, Transition probabilities, Schizophrenia
Language:English
Date:2012
Deposited On:03 Apr 2012 07:10
Last Modified:05 Apr 2016 15:31
Publisher:Springer
ISSN:0896-0267
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1007/s10548-011-0189-7
PubMed ID:21644026
Permanent URL: http://doi.org/10.5167/uzh-57694

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 809kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations