UZH-Logo

Maintenance Infos

Series viscoelastic actuators can match human force perception


Parietti, F; Baud-Bovy, G; Gatti, E; Riener, R; Guzzella, L; Vallery, H (2011). Series viscoelastic actuators can match human force perception. IEEE/ASME Transactions on Mechatronics, 16(5):853-860.

Abstract

Series elastic actuators (SEAs) are frequently used for force control in haptic interaction, because they decouple actuator inertia from the end effector by a compliant element. This element is usually a metal spring or beam, where the static force-deformation relationship offers a cheap force sensor. For high-precision force control, however, the remaining small inertia of this elastic element and of the end effector still limit the sensing performance and rendering transparency. Here, we extend the concept to deformable end effectors manufactured of viscoelastic materials. These materials offer the advantage of extremely low mass at high maximum deformation and applicable load. However, force and deformation are no longer statically related, and history of force and deformation has to be accounted for. We describe an observer-based solution, which allows drift-free force measurement with high accuracy and precision. Although the description of the viscoelastic behavior involves higher-order derivatives, the proposed observer does not require any numerical differentiation. This new integrated concept of sensing and actuation, called series viscoelastic actuator (SVA), is applied to our high-precision haptic device OSVALD, which is targeted at perception experiments that require sensing and rendering of forces in the range of the human tactile threshold. User-device interaction force is controlled using state-of-the-art control strategies of SEAs. Force estimation and force control performance are evaluated experimentally and prove to be compatible with the intended applications, showing that SVAs open up new possibilities for the use of series compliance and damping in high-precision haptic interfaces.

Series elastic actuators (SEAs) are frequently used for force control in haptic interaction, because they decouple actuator inertia from the end effector by a compliant element. This element is usually a metal spring or beam, where the static force-deformation relationship offers a cheap force sensor. For high-precision force control, however, the remaining small inertia of this elastic element and of the end effector still limit the sensing performance and rendering transparency. Here, we extend the concept to deformable end effectors manufactured of viscoelastic materials. These materials offer the advantage of extremely low mass at high maximum deformation and applicable load. However, force and deformation are no longer statically related, and history of force and deformation has to be accounted for. We describe an observer-based solution, which allows drift-free force measurement with high accuracy and precision. Although the description of the viscoelastic behavior involves higher-order derivatives, the proposed observer does not require any numerical differentiation. This new integrated concept of sensing and actuation, called series viscoelastic actuator (SVA), is applied to our high-precision haptic device OSVALD, which is targeted at perception experiments that require sensing and rendering of forces in the range of the human tactile threshold. User-device interaction force is controlled using state-of-the-art control strategies of SEAs. Force estimation and force control performance are evaluated experimentally and prove to be compatible with the intended applications, showing that SVAs open up new possibilities for the use of series compliance and damping in high-precision haptic interfaces.

Citations

14 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

54 downloads since deposited on 24 Feb 2012
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:24 Feb 2012 21:05
Last Modified:05 Apr 2016 15:32
Publisher:IEEE
ISSN:1083-4435
Publisher DOI:https://doi.org/10.1109/TMECH.2011.2162076
Permanent URL: https://doi.org/10.5167/uzh-57804

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 577kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations